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L13: Synchronization 

Today 

o Making a datatype threadsafe  
o Locks 
o Monitor pattern 
o Deadlock 
o Locking disciplines 

Required reading (from the Java Tutorial) 

 Synchronization  

Optional reading 

The material in this lecture is inspired by an excellent book: 

 Brian Goetz et al.  Java Concurrency in Practice.  Addison-Wesley, 2006. 

Review 

Recall the four ways to make data access safe in shared-memory concurrency: 

 Confinement: don’t share the data between threads.  Ensure that only one thread has access 
to it. 

 Immutability: make the shared data immutable. 

 Threadsafe datatype: use a datatype that does the coordination for you, like a 
BlockingQueue or a synchronized collection wrapper. 

 Synchronization: when the data has to be shared between threads, keep two threads from 
accessing it at the same time.  

We talked about the first three in the last lecture.  Synchronization is our topic for today.  We’ll look 
at it in the context of designing a threadsafe abstract datatype. 

Developing a Datatype for a Multiuser Editor  

Suppose we’re building a multi-user editor, like Google Docs, that allows multiple people to connect 
to it and edit it at the same time.  We’ll need a mutable datatype to represent the text in the 
document.  Here’s the interface; basically it represents a string with insert and delete operations. 

/** An EditBuffer represents a threadsafe mutable string of characters in a 

text editor. */ 

public interface EditBuffer { 

    /** 

     * Modifies this by inserting a string. 

     * @param i position to insert (requires 0 <= pos <= current buffer length) 

     * @param s string to insert 

     */ 

    public void insert(int pos, String s); 

     

    /** 

______________ 
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Guttag, Daniel Jackson, Rob Miller, Martin Rinard, and Armando Solar-Lezama. Copyright held by the authors. 
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     * Modifies this by deleting a substring 

     * @param pos start of substring to delete  

     *                (requires 0 <= pos <= current buffer length) 

     * @param len length of substring to delete  

     *                (requires 0 <= len <= current buffer length - pos) 

     */ 

    public void delete(int pos, int len); 

     

    /** 

     * @return length of text sequence in this edit buffer 

     */ 

    public int length(); 

     

    /** 

     * @return content of this edit buffer 

     */ 

    public String toString(); 

} 

A very simple rep for this datatype would just be a string: 

public class SimpleBuffer implements EditBuffer { 

    private String text; 

    // Rep invariant:  

    //   text != null 

    // Abstraction function:  

    //   represents the sequence text[0],...,text[text.length()-1] 

The downside of this rep is that every time we do an insert or delete, we have to copy the entire 
string into a new string.  That gets expensive.  Another rep we could use would be a char array, with 
space at the end.  That’s fine if the user is just typing new text at the end of the document (we don’t 
have to copy anything), but if the user is typing at the beginning of the document, then we’re copying 
the entire document with every keystroke. 

A more interesting rep, which is used by many text editors in practice, is called a gap buffer.  It’s 
basically a char array with extra space in it, but instead of having all the extra space at the end, the 
extra space is a gap that can appear anywhere in the buffer.  Whenever an insert or delete operation 
needs to be done, the datatype first moves the gap to the location of the operation, and then does the 
insert or delete.  If the gap is already there, then nothing needs to be copied – an insert just consumes 
part of the gap, and a delete just enlarges the gap!  Gap buffers are particularly well-suited to 
representing a string that is being edited by a user with a cursor, since inserts and deletes tend to be 
focused around the cursor, so the gap rarely moves. 

/** GapBuffer is a nonthreadsafe EditBuffer that is optimized for editing with 

 *  a cursor, which tends to make a sequence of inserts and deletes at the same  

 *  place in the buffer. */ 

public class GapBuffer implements EditBuffer { 

    private char[] a; 

    private int gapStart; 

    private int gapLength; 

    // Rep invariant:  

    //   a != null 

    //   0 <= gapStart <= a.length 

    //   0 <= gapLength <= a.length - gapStart 

    // Abstraction function:  

    //   represents the sequence a[0],...,a[gapStart-1], 

    //                           a[gapStart+gapLength],...,a[length-1] 

In a multiuser scenario, we’d want multiple gaps, one for each user’s cursor, but we’ll use a single gap 
for now. 
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Steps to Developing the Datatype 

Recall our recipe for designing and implementing an ADT: 

1. Specify. Define the operations (method signatures and specs).  We did that in the 
EditBuffer interface. 

2. Test. Develop test cases for the operations.  See EditBufferTest in the provided code.  The 
test suite includes a testing strategy based on partitioning the parameter space of the 
operations. 

3. Rep. Choose a rep.  We chose two of them for EditBuffer, and this is often a good idea: 
a. Implement a simple, brute-force rep first.  It’s easier to write, you’re more likely 

to get it right, and it will validate your test cases and your specification so you can 
fix problems in them before you move on to the harder implementation.  This is 
why we implemented SimpleBuffer before moving on to GapBuffer.  Don’t throw 
away your simple version, either – keep it around so that you have something to test 
and compare against in case things go wrong with the more complex one. 

b. Write down the rep invariant and abstraction function, and implement 
checkRep().  checkRep() asserts the rep invariant at the end of every constructor, 
producer, and mutator method.  (It’s typically not necessary to call it at the end of 
an observer, since the rep hasn’t changed.)  In fact, assertions can be very useful for 
testing complex implementations, so it’s not a bad idea to also assert the 
postcondition at the end of a complex method.  You’ll see an example of this in 
GapBuffer.moveGap() in the code with this lecture. 

In all these steps, we’re working entirely single-threaded at first.  Multithreaded clients should be in 
the back of our minds at all times while we’re writing specs and choosing reps (we’ll see later that 
careful choice of operations may be necessary to avoid race conditions in the clients of your datatype).  
But get it working, and thoroughly tested, in a sequential, single-threaded environment first. 

Now we’re ready for the next step: 

4. Synchronize.  Make an argument that your rep is threadsafe.  Write it down explicitly as a 
comment in your class, right by the rep invariant, so that a maintainer knows how you 
designed thread safety into the class.  

This lecture is about how to do step 4. 

Examples of Thread Safety Arguments 

Let’s see some examples of how to make thread safety arguments for a datatype.  Remember our 
four approaches to thread safety: confinement, immutability, threadsafe datatypes, and 
synchronization. 

Confinement is not usually an option when we’re making an argument just about a datatype, 
because you have to know what threads exist in the system and what objects they’ve been given 
access to.  If the datatype creates its own set of threads (like the Crawler datatype we used last 
lecture), then you can talk about confinement with respect to those threads.  Otherwise, the threads 
are coming in from the outside, carrying client calls, and the datatype may have no guarantees about 
which threads have references to what.  So confinement isn’t a useful argument in that case.  Usually 
we use confinement at a higher level, talking about the system as a whole and arguing why we don’t 
need thread safety for some of our modules or datatypes, because they won’t be shared across threads 
by design. 

Immutability is often a useful argument: 

public class String { 
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    private final char[] a; 

    // thread safety argument: 

    //    This class is threadsafe because it's immutable: 

    //    - a is final 

    //    - a points to a mutable char array, but that array is encapsulated 

    //    in this object, not shared with any other object or exposed 

    //    to a client. 

Here’s another rep for String that requires a little more care in the argument: 

public class String { 

    private final char[] a; 

    private final int start; 

    private final int len; 

    // rep invariant: 

    //    a != null, 0<=start<=a.length, 0<=len<=a.length-start 

    // abstraction function: 

    //    represents the string of characters 

    //             a[start],...,a[start+length-1] 

    // thread safety argument: 

    //    This class is threadsafe because it's immutable: 

    //    - a, start, and len are final 

    //    - a points to a mutable char array, which may be shared with 

    //    other String objects, but they never mutate it. 

    //    The array is never exposed to a client. 

Note that since this String rep was designed for sharing the array between multiple String objects, we 
have to ensure that the sharing doesn’t threaten its thread safety.  As long as it doesn’t threaten the 
String’s immutability, however, we can be confident that it won’t threaten the thread safety. 

We also have to avoid rep exposure.  Rep exposure is bad for any datatype, since it threatens the 
datatype’s rep invariant.  It’s also fatal to thread safety. 

Bad Arguments 

Here are some incorrect arguments for thread safety: 

/** SimpleBuffer is a threadsafe EditBuffer with a simple rep. */ 

public class SimpleBuffer implements EditBuffer { 

    private String text; 

    // Rep invariant:  

    //   text != null 

    // Abstraction function:  

    //   represents the sequence text[0],...,text[text.length()-1] 

    // Thread safety argument: 

    //   text is an immutable (and hence threadsafe) String,  

    //   so this object is also threadsafe 

Why doesn’t this argument work?  String is indeed immutable and threadsafe; but the rep pointing to 
that string, specifically the text variable, is not immutable.  Text is not a final variable, and in fact it 
can’t be in this datatype, because we need the datatype to support insertion and deletion operations.  
So reads and writes of the text variable itself are not threadsafe.  This argument is false. 

Here’s another broken argument: 

public class Graph { 

    private final Set<Node> nodes =  

                         Collections.synchronizedSet(new HashSet<Node>()); 

    private final Map<Node,Node> edges =  

                         Collections.synchronizedMap(new HashMap<Node,Node>()); 

    // rep invariant: 

    //    nodes, edges != null 

    //    if edges maps x -> y, then nodes contains x and y 
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    // abstraction function: 

    //    represents a directed graph whose nodes are the set of nodes  

    //                                  and edges are the x->y pairs in edges 

    // thread safety argument: 

    //    - nodes and edges are final, so those variables are immutable 

    //      and threadsafe. 

    //    - nodes and edges point to threadsafe set and map datatypes 

This is a graph datatype, which stores its nodes in a set and its edges in a map.  (Quick quiz: is Graph 
a mutable or immutable datatype?  What do the final keywords have to do with its mutability?) 

Graph relies on other threadsafe datatypes to help it implement its rep – specifically the threadsafe 
Set and Map wrappers that we talked about last lecture.  That helps a lot to prevent race conditions, 
but it doesn’t provide a sufficient guarantee, because the graph’s rep invariant includes a relationship 
between the node set and the edge map:  all nodes that appear in the edge map also have to appear in 
the node set.  So there may be code like this: 

    public void addEdge(Node from, Node to) { 

        edges.put(from, to); 

        nodes.add(from); 

        nodes.add(to); 

    } 

which would produce a race condition – a moment when the rep invariant is violated.  Even though 
the threadsafe set and map datatypes guarantee that their own add() and put() methods are atomic 
and noninterfering, they can’t extend that guarantee to interactions between the two data structures.  
So the rep invariant of the Graph is not safe from race conditions.  Just using immutable and 
threadsafe-mutable datatypes is not sufficient when the rep invariant depends on relationships 
between objects in the rep.  

Locking 

So we need a way for a datatype to protect itself from interfering access by multiple threads.  A 
popular synchronization technique, so common that Java provides it as a built-in language feature, is 
locking. 

A lock is an abstraction that allows at most one thread to own it at a time.  Locks have two 
operations: acquire (to own the lock for a while) and release (to allow another thread to own it). If a 
thread tries to acquire a lock currently owned by another thread, then it blocks until the other thread 
releases the lock and the thread successfully acquires it. 

In Java, every object has a lock implicitly associated with it – a String, an array, an ArrayList, and 
every class you create, all their object instances have a lock.  Even a humble Object has a lock, so 
bare Objects are often used for explicit locking:  

      Object lock = new Object(); 

You can’t call acquire and release on that lock directly, however.  Instead you use the synchronized 
statement to acquire a lock for the duration of a statement block. 

        synchronized (lock) { // thread blocks here until lock is free 

            // now this thread has the lock 

            balance = balance + 1; 

            // exiting the block releases the lock 

        } 

Synchronized regions like this provide mutual exclusion: only one thread at a time can be in a 
synchronized region guarded by a given object’s lock.  In other words, you are back in sequential 
programming world, with only one thread running at a time, at least with respect to other 
synchronized regions that refer to the same object. 
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Locks are used to guard a shared data variable, like the account balance shown here.  If all accesses 
to a data variable are guarded (surrounded by a synchronized block) by the same lock object, then 
those accesses will be guaranteed to be atomic – uninterrupted by other threads. 

Monitor Pattern 

When you are writing methods of a class, the most convenient lock is the object instance itself, i.e. 
this.  As a simple approach, we can guard the entire rep of a class by wrapping all accesses to the rep 
inside synchronized(this). 

/** SimpleBuffer is a threadsafe EditBuffer with a simple rep. */ 

public class SimpleBuffer implements EditBuffer { 

    private String text; 

    ... 

    public SimpleBuffer() { 

        synchronized (this) { 

            text = ""; 

            checkRep(); 

        } 

    } 

     

    public void insert(int pos, String s) { 

        synchronized (this) { 

            text = text.substring(0, pos) + s + text.substring(pos); 

            checkRep(); 

        } 

    } 

 

    public void delete(int pos, int len) { 

        synchronized (this) { 

            text = text.substring(0, pos) + text.substring(pos+len); 

            checkRep(); 

        } 

    } 

 

    public int length() { 

        synchronized (this) { 

            return text.length(); 

        } 

    } 

 

    public String toString() { 

        synchronized (this) { 

            return text; 

        } 

    } 

} 

Note the very careful discipline here.  Every method that touches the rep must be guarded with the 
lock – even apparently small and trivial ones like length() and toString().  This is because reads must 
be guarded as well as writes – if reads are left unguarded, then they may be able to see the rep in a 
partially-modified state. 

This approach is called the monitor pattern.  A monitor is a class whose methods are mutually 
exclusive, so that only one thread can be inside the class at a time. 

The monitor pattern is so useful in Java that Java provides some syntactic sugar for it.  If you add the 
keyword synchronized to the method signature, then Java will act as if you wrote synchronized(this) 
around its method body.  So the code below is an equivalent way to implement the synchronized 
SimpleBuffer:  
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/** SimpleBuffer is a threadsafe EditBuffer with a simple rep. */ 

public class SimpleBuffer implements EditBuffer { 

    private String text; 

    ... 

    public SimpleBuffer() { 

        text = ""; 

        checkRep(); 

    } 

     

    public synchronized void insert(int pos, String s) { 

        text = text.substring(0, pos) + s + text.substring(pos); 

        checkRep(); 

    } 

 

    public synchronized void delete(int pos, int len) { 

        text = text.substring(0, pos) + text.substring(pos+len); 

        checkRep(); 

    } 

 

    public synchronized int length() { 

        return text.length(); 

    } 

 

    /** @see EditBuffer#toString */ 

    public synchronized String toString() { 

        return text; 

    } 

} 

Notice that the SimpleBuffer constructor doesn’t have a synchronized keyword.  Java actually forbids 
it, syntactically, because an object under construction should be confined to a single thread until it 
has returned from its constructor.  So synchronizing constructors should be unnecessary. 

/** SimpleBuffer is a threadsafe EditBuffer with a simple rep. */ 

public class SimpleBuffer implements EditBuffer { 

Thread Safety Argument with Synchronization 

Now that we’re protecting SimpleBuffer’s rep with a lock, we can write a better thread safety 
argument: 

/** SimpleBuffer is a threadsafe EditBuffer with a simple rep. */ 

public class SimpleBuffer implements EditBuffer { 

    private String text; 

    // Rep invariant:  

    //   text != null 

    // Abstraction function:  

    //   represents the sequence text[0],...,text[text.length()-1] 

    // Thread safety argument: 

    //   all accesses to text happen within SimpleBuffer methods, 

    //   which are all guarded by SimpleBuffer’s lock 

The same argument works for GapBuffer, if we use the monitor pattern to synchronize all its 
methods. 

Note that the encapsulation of the class, the absence of rep exposure, is very important for making 
this argument.  If text were public: 

    public String text; 

then clients outside SimpleBuffer would be able to read and write it without knowing that they should 
first acquire the lock, and SimpleBuffer would no longer be threadsafe.  

7



Locking Discipline 

1. Every shared mutable variable must be guarded by some lock.  The data may not be read or 
written except inside a synchronized block that acquires that lock. 

2. If an invariant involves multiple shared mutable variables (which might be in different 
objects), then all the variables involved must be guarded by the same lock.  The invariant 
must be satisfied before releasing the lock. 

The monitor pattern satisfies both rules.  All the shared mutable data in the rep – which the rep 
invariant depends on -- is guarded by the same lock.  

Giving Clients Access to a Lock  

It’s sometimes useful to make your datatype’s lock available to clients, so that they can use it to 
implement higher-level atomic operations using your datatype.  For example, consider a find and 
replace operation on the EditBuffer datatype: 

    /* Modifies buf by replacing the first occurrence of s with t. 

     * If s not found in buf, then has no effect. 

     * @returns true if and only if a replacement was made 

     */ 

    public static boolean findReplace(EditBuffer buf, String s, String t) { 

        int i = buf.toString().indexOf(s); 

        if (i == -1) { 

            return false; 

        } 

        buf.delete(i, s.length()); 

        buf.insert(i, t); 

        return true; 

    } 

This method makes three different calls to buf – to convert it to a string in order to search for s, to 
delete it, and then to insert t in its place.  Even though each of these calls individually is atomic, the 
findReplace method as a whole is not threadsafe, because other threads might mutate the buffer 
while findReplace() is working, causing it to delete the wrong region or put the replacement back in 
the wrong place. 

To prevent this, findReplace() needs to synchronize with all other clients of buf.  One approach is to 
simply document that clients can use the EditBuffer’s lock to synchronize with each other: 

/** An EditBuffer represents a threadsafe mutable string of characters  

    in a text editor.  Clients may synchronize with each other using  

    the EditBuffer object itself. */ 

public interface EditBuffer { 

   ... 

} 

And then findReplace() can synchronize on buf: 

    public static boolean findReplace(EditBuffer buf, String s, String t) { 

        synchronized (buf) { 

            int i = buf.toString().indexOf(s); 

            if (i == -1) { 

                return false; 

            } 

            buf.delete(i, s.length()); 

            buf.insert(i, t); 

            return true; 

        } 

    } 
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The effect of this is to enlarge the synchronization region that the monitor pattern already put 
around the individual toString(), delete(), and insert() methods, into a single atomic region that 
ensures that all three methods are executed without interference from other threads. 

Sprinkling Synchronized Everywhere? 

So is thread safety simply a matter of putting the synchronized keyword on every method in your 
program?  Unfortunately not. 

First, you actually don’t want to synchronize methods willy-nilly.  Synchronization imposes a large 
cost on your program.  Making a synchronized method call may take significantly longer, because of 
the need to acquire a lock (and flush caches and communicate with other processors).  Java leaves 
many of its mutable datatypes unsynchronized by default exactly for these performance reasons.  
When you don’t need synchronization, don’t use it. 

Second, it’s not sufficient.  Dropping synchronized onto a method without thinking means that you’re 
acquiring a lock without thinking about which lock it is, or about whether it’s the right lock for 
guarding the shared data access you’re about to do.  Suppose we had tried to solve findReplace()’s 
synchronization problem simply by dropping synchronized onto its method: 

    public static synchronized boolean findReplace(EditBuffer buf, ...) { 

This wouldn’t do what we want.  It would indeed acquire a lock -- because findReplace is a static 
method, it would acquire a static lock for the whole class that findReplace happens to be in, rather 
than an instance object lock.  As a result, only one thread could call findReplace() at a time – even if 
other threads want to operate on different buffers, which should be safe, they’d still be blocked until 
the single lock was free.  So we’d suffer a significant loss in performance, because only one user of 
our massive multiuser editor would be allowed to do a find-and-replace at a time, even if they’re all 
editing different documents.  Worse, however, it wouldn’t provide much protection, because other 
code that touches the document probably wouldn’t be acquiring the same lock. 

The synchronized keyword is not a panacea.  Thread safety requires a discipline – using confinement, 
immutability, or locks to protect shared data.  That discipline needs to be written down, or 
maintainers won’t know what it is. 

Designing a Datatype For Concurrency 

findReplace()’s problem can be interpreted another way: that the EditBuffer interface really isn’t that 
friendly to multiple simultaneous clients.  It relies on integer indexes to specify insert and delete 
locations, which are extremely brittle to other mutations.  If somebody else inserts or deletes before 
the index position, then the index becomes invalid. 

So if we’re designing a datatype specifically for use in a concurrent system, we need to think about 
providing operations that have better-defined semantics when they are interleaved.  For example, it 
might be better to pair EditBuffer with a Position datatype representing a cursor position in the 
buffer, or even a Selection datatype representing a selected range.  Once obtained, a Position could 
hold its location in the text against the wash of insertions and deletions around it, until the client was 
ready to use that Position.  If some other thread deleted all the text around the Position, then the 
Position would be able to inform a subsequent client about what had happened (perhaps with an 
exception), and allow the client to decide what to do.  These kinds of considerations come into play 
when designing a datatype for concurrency. 

As another example, consider the ConcurrentMap interface in Java. This interface extends the 
existing Map interface, adding a few key methods that are commonly needed as atomic operations on 
a shared mutable map, e.g.: 
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 map.putIfAbsent(key,value) is an atomic version of  

  if (!map.containsKey(key)) map.put(key, value); 

 map.replace(key, value) is an atomic version of 

  if (map.containsKey(key)) map.put(key, value); 

Deadlock Rears its Ugly Head 

The locking approach to thread safety is powerful, but (unlike confinement and immutability) it 
introduces blocking into the program.  Threads must sometimes wait for other threads to get out of 
synchronized regions before they can proceed.  And blocking raises the possibility of deadlock – a 
very real risk, and frankly far more common in this setting than in message passing with blocking 
I/O (where we first saw it last week). 

With locking, deadlock happens when threads acquire multiple locks at the same time, and two 
threads end up blocked while holding locks that they are each waiting for the other to release.  The 
monitor pattern unfortunately makes this fairly easy to do.  Here’s an example.  Suppose we’re 
modeling the social network of a series of books: 

public class Wizard { 

    private final String name; 

    private final Set<Wizard> friends; 

    // rep invariant: 

    //    name, friends != null 

    //    friend links are bidirectional:  

    //        for all f in friends, f.friends contains this 

    // concurrency argument: 

    //    threadsafe by monitor pattern: all accesses to rep  

    //    are guarded by this object's lock 

     

    public Wizard(String name) { 

        this.name = name; 

        this.friends = new HashSet<Wizard>(); 

    } 

     

    public synchronized boolean isFriendsWith(Wizard that) { 

        return this.friends.contains(that); 

    } 

     

    public synchronized void friend(Wizard that) { 

        if (friends.add(that)) { 

            that.friend(this); 

        }  

    } 

     

    public synchronized void defriend(Wizard that) { 

        if (friends.remove(that)) { 

            that.defriend(this); 

        }  

    } 

} 

Like Facebook, this social network is bidirectional: if x is friends with y, then y is friends with x.  The 
friend() and defriend() methods enforce that invariant by modifying the reps of both objects, which 
because they use the monitor pattern means acquiring the locks to both objects as well. 

Let’s create a couple of wizards: 

    Wizard harry = new Wizard("Harry Potter"); 

    Wizard snape = new Wizard("Severus Snape"); 

10



And then think about what happens when two independent threads are repeatedly running: 

    // thread A     // thread B 

    harry.friend(snape);    snape.friend(harry); 

    harry.defriend(snape);    snape.defriend(harry); 

We will deadlock very rapidly.  Here’s why.  Suppose thread A is about to execute 
harry.friend(snape), and thread B is about to execute snape.friend(harry).  Thread A acquires the lock 
on harry (because the friend method is synchronized).  Then thread B acquires the lock on snape (for 
the same reason).  They both update their individual reps independently, and then try to call friend() 
on the other object – which requires them to acquire the lock on the other object.  So A is holding 
Harry and waiting for Snape, and B is holding Snape and waiting for Harry.  Both threads are stuck 
in friend(), so neither one will ever manage to exit the synchronized region and release the lock to the 
other.  This is a classic deadly embrace.  The program simply stops. 

The essence of the problem is acquiring multiple locks, and holding some of the locks while waiting 
for another lock to become free.  

One Solution to Deadlock: Lock Ordering 

One way to prevent deadlock is to put an ordering on the locks that need to be acquired 
simultaneously, and ensuring that all code acquires the locks in that order.  This is a  

In our social network example, we might always acquire the locks on the Wizard objects in 
alphabetical order by the wizard’s name.  Since thread A and thread B are both going to need the 
locks for Harry and Snape, they would both acquire them in that order: Harry’s lock first, then 
Snape’s.  If thread A gets Harry’s lock before B does, it will also get Snape’s lock before B does, 
because B can’t proceed until A releases Harry’s lock again. The ordering on the locks forces an 
ordering on the threads acquiring them, so there’s no way to produce a cycle in the waiting-for graph. 

Here’s what the code might look like.  

    public void friend(Wizard that) { 

        Wizard first, second; 

        if (this.name.compareTo(that.name) < 0) { 

            first = this; second = that; 

        } else { 

            first = that; second = this;             

        } 

 

        synchronized (first) { 

            synchronized (second) { 

                if (friends.add(that)) { 

                    that.friend(this); 

                }  

            } 

        } 

    } 

(Note that the decision to order the locks alphabetically by the person’s name would work fine for 
this book, but it wouldn’t work in a real life social network.  Why not?  What would be better to use 
for lock ordering than the name?) 

Although lock ordering is useful (particularly in code like operating system kernels), it has a number 
of drawbacks in practice.  First, it’s not modular – the code has to know about all the locks in the 
system, or at least in its subsystem.  Second, it may be difficult or impossible for the code to know 
exactly which of those locks it will need before it even acquires the first one.  It may need to do some 
computation to figure it out.  Think about doing a depth-first search on the social network graph, for 
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example – how would you know which nodes need to be locked, before you’ve even started looking 
for them?  

Another Approach: Coarse-Grained Locking 

A more common approach than lock ordering, particularly for application programming (as opposed 
to operating system or device driver programming), is to use coarser locking – use a single lock to 
guard many object instances, or even a whole subsystem of a program. 

For example, we might have a single lock for an entire social network, and have all the operations on 
any of its constituent parts synchronize on that lock.  In the code below, all Wizards belong to a 
Castle, and we just use that Castle object’s lock to synchronize: 

public class Wizard { 

    private final Castle castle; 

    private final String name; 

    private final Set<Wizard> friends; 

    ... 

    public void friend(Wizard that) { 

        synchronized (castle) { 

            if (this.friends.add(that)) { 

                that.friend(this); 

            } 

        } 

    } 

} 

Coarse-grained locks can have a significant performance penalty.  If you guard a large pile of mutable 
data with a single lock, then you’re giving up the ability to access any of that data concurrently.  In 
the worst case, having a single lock protecting everything, your program might be essentially 
sequential – only one thread is allowed to make progress at a time. 

Concurrency in Practice 

What strategies are typically followed in real programs? 

 Library data structures either use no synchronization (to offer performance to single-
threaded clients, while leaving it to multithreaded clients to add locking on top) or the 
monitor pattern. 

 Mutable data structures with many parts typically use either coarse-grained locking or 
thread confinement.  Most graphical user interface toolkits follow one of these approaches, 
because a graphical user interface is basically a big mutable tree of mutable objects.  Java 
Swing, the toolkit we’ll be looking at in the next lecture, uses thread confinement.  Only a 
single dedicated thread is allowed to access Swing’s tree.  Other threads have to pass 
messages to that dedicated thread in order to access the tree. 

 Search often uses immutable datatypes.  Our Sudoku SAT solver would be easy to make 
multithreaded, because all the datatypes involved were immutable.  There would be no risk 
of either races or deadlocks. 

 Operating systems often use fine-grained locks in order to get high performance, and use 
lock ordering to deal with deadlock problems. 

We’ve omitted one important approach to mutable shared data because it’s outside the scope of this 
course, but it’s worth mentioning: a database.  Database systems are widely used for distributed 
client/server systems like web applications.  Databases avoid race conditions using transactions, which 
are similar to synchronized regions in that their effects are atomic, but they don’t have to acquire 
locks, though a transaction may fail and be rolled back if it turns out that a race occurred.  Databases 
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can also manage locks, and handle locking order automatically.  For more about how to use 
databases in system design, 6.170 Software Studio is strongly recommended; for more about how 
databases work on the inside, take 6.814 Database Systems. 

Summary 

 Make thread safety arguments about your datatypes, and document them in the code 

 Acquiring a lock allows a thread to have exclusive access to the data guarded by that lock, 
forcing other threads to block  

 The monitor pattern guards the rep of a datatype with a single lock that is acquired by every 
method 

 Blocking caused by acquiring multiple locks creates the possibility of deadlock, which can be 
solved by lock ordering or coarse-grained locking 
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