

Little Languages

Rob Miller

Fall 2011

© Robert Miller 2011
 1

Today’s Topics
Functionals
Objects representing executable code

Higher-order functions
Functions that accept functions as arguments or return them as

results

Domain-specific languages
PCAP: primitives, combination, abstraction pattern

© Robert Miller 2011 2

Representing Code with Data
Consider a datatype representing language syntax

Formula is the language of propositional logic formulas
a Formula value represents program code in a data structure; i.e.

new And(new Var(“x”), new Var(“y”))
has the same semantic meaning as the Java code

x && y

but a Formula value is a first-class object
• first-class: a value that can be passed, returned, stored,

manipulated
• the Java expression “x && y” is not first-class

© Robert Miller 2011 3

Representing Code as Data
Recall the visitor pattern
A visitor represents a function over a datatype

• e.g. new SizeVisitor() represents size : List → int

public class SizeVisitor<E> implements ListVisitor<E,Integer> {
public Integer visit(Empty<E> l) { return 0; }
public Integer visit(Cons<E> l) { return 1 +

l.rest().accept(this); }

}

A visitor represents code as a first-class object, too
A visitor is an object that can be passed around, returned, and

stored

But it’s also a function that can be invoked

Today’s lecture will see more examples of code as
data

© Robert Miller 2011 4

Today’s Problem: Music
Interesting music tends to have a lot of repetition
Let’s look at rounds, canons, fugues
A familiar simple round is “Row Row Row Your Boat”: one voice

starts, other voices enter after a delay
Row row row your boat, gently down the stream, merrily merrily ...

Row row row your boat, gently down the
stream...

Bach was a master of this kind of music
• Recommended reading: Godel Escher Bach, by Douglas

Hofstadter

Recall our MIDI piano from early lectures
A song could be represented by Java code doing a sequence of

calls on a state machine:

machine.play(E); machine.play(D); machine.play(C); ...

We want to capture the code that operates this kind of machine as
first-class data objects that we can manipulate, transform, and

© Robert Miller 2011 repeat easily 5

Music Data Type
Let’s start by representing simple tunes
Music = Note(duration:double, pitch:Pitch, instr:Instrument)

+ Rest(duration:double)
+ Concat(m1:Music, m2:Music)

duration is measured in beats
Pitch represents note frequency (e.g. C, D, E, F, G; essentially the

keys on the piano keyboard)

 Instrument represents the instruments available on a MIDI

synthesizer

Design questions
 is this a tree or a list? what would it look like defined the other way?
what is the “empty” Music object?

• it’s usually good for a data type to be able to represent nothing
• avoid null

what are the rep invariants for Note, Rest, Concat?
© Robert Miller 2011 6

A Few of Music’s Operations
notes : String x Instrument → Music

requires string is in a subset of abc music notation abc notation

e.g. notes(“E D C D | E E E2 |”, PIANO) can also encode

sharps & flats,
1 beat note 2-beat note higher/lower octaves

duration : Music → double

returns total duration of music in beats

e.g. duration(Concat(m1, m2)) = duration(m1) + duration(m2)

transpose : Music x int → Music

returns music with all notes shifted up or down in pitch by the given

number of semitones (i.e., steps on a piano keyboard)

all these operations also
play : Music → void have precondition that

effects plays the music parameters are non-null

© Robert Miller 2011 7

Implementation Choices
Creators can be constructors or factory methods
 Java constructors are limited: interfaces can’t have them, and constructor

can’t choose which runtime type to return

• new C() must always be an object of type C,
•	 so we can’t have a constructor Music(String, Instrument), whether

Music is an interface or an abstract class

Observers & producers can be methods or visitors
Methods break up function into many files; visitor is all in one place
 Adding a method requires changing source of classes (not always possible)
 Visitor keeps dependencies out of data type itself (e.g. MIDI dependence)
Method has direct access to private rep; visitor needs to use observers

Producers can also be new subclasses of the datatype

 e.g. Music = ... + Transpose(m:Music, semitones:int)
Defers the actual evaluation of the function
 Enables more sharing between values
 Adding a new subclass requires changing all visitors

© Robert Miller 2011 8

Duality Between Interpreter and Visitor

Operation using interpreter pattern
Adding new operation is hard (must add a method to every existing

class)
Adding new class is easy (changes only one place: the new class)

Operation using visitor pattern
Adding new operation is easy (changes only one place: the new

visitor)
Adding new class is hard (must add a method to every existing

visitor)

© Robert Miller 2011 9

Multiple Voices
For a round, the parts need to be sung simultaneously

Music = Note(duration:double, pitch:Pitch, instr:Instrument)

+ Rest(duration:double)
+ Concat(m1:Music, m2:Music)
+ Together(m1:Music, m2:Music)

Here’s where our decision to make Concat() tree-like becomes very
useful
• Suppose we instead had:

Concat = List<Note + Rest>

Together = List<Concat>

• What kinds of music would we be unable to express?

Composite pattern
The composite pattern means that groups of objects (composites)

can be treated the same way as single objects (primitives)

T = C1(... ,T) +...+ Cn(... ,T) + P1(...) +...+ Pm(...)

Music and Formula are
composites primitives composite data types.© Robert Miller 2011 10

Simple Rounds
We need one more operation:

delay : Music x double → Music

delay(m, dur) = concat(rest(dur), m)

And now we can express Row Row Row Your Boat

rrryb = notes(“C C C3/4 D/4 E | E3/4 D/4 E3/4 F/4 G2 | ...”, PIANO)

together(rrryb, delay(rrryb, 4))

• Two voices playing together, with the second voice delayed by 4 beats
 This pattern is found in all rounds, not just Row Row Row Your Boat
 Abstract out the common pattern

canon : Music x double x int → Music

canon(m, dur, n) = 	m if n == 1
together(m, canon(delay(m, dur), dur, n-1)) if n > 1

 The ability to capture a general pattern like canon() is one of the advantages
of music as a first-class object rather than merely a sequence of play() calls

© Robert Miller 2011 11

Distinguishing Voices
We want each voice in the canon to be distinguishable

e.g. an octave higher, or lower, or using a different instrument
So these operations over Music also need to be first-class objects

that can be passed to canon()

Extend canon() to apply a function to the repeated

melody

canon : Music x int x double x (Music->Music) → Music

e.g. canon(rrryb, 4, 4, transposer(OCTAVE))
produces 4 voices, each one octave higher than the last

transposer: int -> (Music->Music)
transposer(semitones) = lambda m: transpose(m, semitones)

canon() is a higher-order function
A higher-order function takes a function as an argument or returns a

function as its result

© Robert Miller 2011 12

Counterpoint
A canon is a special case of a more general pattern

Counterpoint is n voices singing related music, not necessarily

delayed
counterpoint : Music x (Music → Music) x int → Music

Expressed as counterpoint, a canon applies two functions to the
music: delay and transform

canon(m, d, f, n) = counterpoint(m, f ○ delayer(d), n)
delayer : int → (Music->Music)
delayer(d) = lambda m: delay(m, d)

Another general pattern
function composition ○ : (U → V) x (T → U) → (T → V)

© Robert Miller 2011 13

Repeating
A line of music can also be repeated by the same

voice

repeat : Music x int x (Music → Music) → Music
e.g. repeat(rrryb, 2, octaveHigher) = concat(rryb, octaveHigher(rryb))

Note the similarity to counterpoint():

counterpoint: m together f(m) together ... together fn-1(m)

repetition: m concat f(m) concat ... concat fn-1(m)

 And in other domains as well:

sum: x + f(x) + ... + fn-1(m)

product: x · f(x) · ... · fn-1(m)

 There’s a general pattern here, too; let’s capture it
series : T x (T x T → T) x (T → T) x int → T

binary op f ninitial value
counterpoint(m, f, n) = series(m, together, f, n)
repeat(m, f, n) = series(m, concat, f, n)

© Robert Miller 2011 14

Repeating Forever
Music that repeats forever is useful for canons

forever: Music → Music

play(forever(m)) plays m repeatedly, forever

duration(forever(m)) = +∞
 double actually has a value for this:
Double.POSITIVE_INFINITY

Music = Note(duration:double, pitch:Pitch, instr:Instrument)
+ Rest(duration:double)
+ Concat(m1:Music, m2:Music)
+ Together(m1:Music, m2:Music)
+ Forever(m:Music)	 why can’t we implement forever()

using repeat(), or any of the existing
Music subtypes?

Here’s the Row Row Row Your Boat round, forever:

canon (forever(rrryb), 4, 4, octaveHigher)

© Robert Miller 2011 15

Accompaniment

accompany: Music x Music → Music

repeats second piece until its length matches the first piece

melody line

bass line or drum line,

repeated to match melody’s length

together(m, repeat(b, identity, duration(m)/duration(b))) if duration(m) finite

together(m, forever(b)) if duration(m) infinite

accompany(m, b) =

© Robert Miller 2011

16

Pachelbel’s Canon
(well, the first part of it, anyway...)

pachelbelBass = notes(“D,2 A,,2 | B,,2 ^F,, | ... | “, CELLO)

pachelbelMelody = notes(“^F’2 E’2 | D’2 ^C’2 | ... | ... | ... | ... | ... |“,
VIOLIN)

pachelbelCanon = canon(forever(pachelbelMelody), 3, 16)

pachelbel = concat(pachelbelBass, accompany(pachelbelCanon,
pachelbelBass))

© Robert Miller 2011 17

Little Languages
We’ve built a new language embedded in Java
Music data type and its operations constitute a language for

describing music generation

 Instead of just solving one problem (like playing Row Row Row Your
Boat), build a language or toolbox that can solve a range of related
problems (e.g. Pachelbel’s canon)
This approach gives you more flexibility if your original problem turns

out to be the wrong one to solve (which is not uncommon in
practice!)
Capture common patterns as reusable abstractions

Formula was an embedded language too
Formula combined with SAT solver is a powerful tool that solves a

wide range of problems

© Robert Miller 2011 18

Embedded Languages
Useful languages have three critical elements

Java Formula language Music language

Primitives 3, false Var, Bool notes, rest

Means of
Combination

+, *,
==, &&,
||, ...

and, or, not together,
concat,
transpose,
delay, …

Means of
Abstraction

variables,
methods,
classes

naming + methods
in Java

naming + functions in
Python

6.01 calls this PCAP (the Primitive-Combination-Abstraction pattern)

© Robert Miller 2011 19

Summary
Review of many concepts we’ve seen in 6.005
Abstract data types, recursive data types, interpreter/visitor,

composite, immutability

Code as data
Recursive datatypes, visitors, and functional objects are all ways to

express behavior as data that can be manipulated and changed
programmatically

Higher-order functions
Operations that take or return functional objects

Building languages to solve problems
A language has greater flexibility than a mere program, because it

can solve large classes of related problems instead of a single
problem
Composite, interpreter, visitor, and higher-order functions are useful

for implementing powerful languages
But in fact any well-designed abstract data type is like a new

© Robert Miller 2011 language 20

MIT OpenCourseWare
http://ocw.mit.edu

6���� (OHPHQWV�RI�6RIWZDUH�&RQVWUXFWLRQ
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

