
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 2 Ver 2.0 More on Document Distance 6.006 Spring 2008

Lecture 2: More on the Document Distance

Problem

Lecture Overview

Today we will continue improving the algorithm for solving the document distance problem.

•	 Asymptotic Notation: Define notation precisely as we will use it to compare the
complexity and efficiency of the various algorithms for approaching a given problem
(here Document Distance).

•	 Document Distance Summary - place everything we did last time in perspective.

•	 Translate to speed up the ‘Get Words from String’ routine.

•	 Merge Sort instead of Insertion Sort routine

–	 Divide and Conquer

–	 Analysis of Recurrences

•	 Get rid of sorting altogether?

Readings

CLRS Chapter 4

Asymptotic Notation

General Idea

For any problem (or input), parametrize problem (or input) size as n Now consider many
different problems (or inputs) of size n. Then,

T (n) = worst case running time for input size n

= max running time on X
X: Input of Size n

How to make this more precise?

•	 Don’t care about T (n) for small n

•	 Don’t care about constant factors (these may come about differently with different
computers, languages, . . .)

For example, the time (or the number of steps) it takes to complete a problem of size n
might be found to be T (n) = 4n2 − 2n + 2 µs. From an asymptotic standpoint, since n2

will dominate over the other terms as n grows large, we only care about the highest order
term. We ignore the constant coefficient preceding this highest order term as well because
we are interested in rate of growth.

1

Lecture 2 Ver 2.0 More on Document Distance 6.006 Spring 2008

Formal Definitions

1.	 Upper Bound: We say T (n) is O(g(n)) if ∃ n0, ∃ c s.t. 0 ≤ T (n) ≤ c.g(n) ∀n ≥ n0

Substituting 1 for n0, we have 0 ≤ 4n2 − 2n + 2 ≤ 26n2 ∀n ≥ 1
∴ 4n2 − 2n + 2 = O(n2)
Some semantics:

•	 Read the ‘equal to’ sign as “is” or � belongs to a set.

•	 Read the O as ‘upper bound’

2.	 Lower Bound: We say T (n) is Ω(g(n)) if ∃ n0, ∃ d s.t. 0 ≤ d.g(n) ≤ T (n) ∀n ≥ n0

Substituting 1 for n0, we have 0 ≤ 4n2 + 22n − 12 ≤ n2 ∀n ≥ 1
∴ 4n2 + 22n − 12 = Ω(n2)
Semantics:

•	 Read the ‘equal to’ sign as “is” or � belongs to a set.

Read the Ω as ‘lower bound’ •

3.	 Order: We say T (n) is Θ(g(n)) iff T (n) = O(g(n)) and T (n) = Ω(g(n))

Semantics: Read the Θ as ‘high order term is g(n)’

Document Distance so far: Review

To compute the ‘distance’ between 2 documents, perform the following operations:

For each of the 2 files:

Read file

Make word list + op on list Θ(n2)

Count frequencies double loop Θ(n2)

Sort in order insertion sort, double loop Θ(n2)

Once vectors D1,D2 are obtained: � �
Compute the angle arccos D1·D2 Θ(n)�D1�∗�D2�

2

Lecture 2 Ver 2.0 More on Document Distance 6.006 Spring 2008

The following table summarizes the efficiency of our various optimizations for the Bobsey
vs. Lewis comparison problem:

Version Optimizations Time Asymptotic
V1 initial ? ?
V2 add profiling 195 s
V3 wordlist.extend(. . .) 84 s Θ(n2) Θ(n)→
V4 dictionaries in count-frequency 41 s Θ(n2) Θ(n)→
V5 process words rather than chars in get words from string 13 s Θ(n) Θ(n)→
V6 merge sort rather than insertion sort 6 s Θ(n2) Θ(n lg(n))→

V6B eliminate sorting altogether 1 s a Θ(n) algorithm

The details for the version 5 (V5) optimization will not be covered in detail in this lecture.
The code, results and implementation details can be accessed at this link. The only big
obstacle that remains is to replace Insertion Sort with something faster because it takes
time Θ(n2) in the worst case. This will be accomplished with the Merge Sort improvement
which is discussed below.

Merge Sort

Merge Sort uses a divide/conquer/combine paradigm to scale down the complexity and
scale up the efficiency of the Insertion Sort routine.

input array of size nA

L R

sortsort

L’ R’

merge

sorted array A

2 arrays of size n/2

2 sorted arrays
 of size n/2

sorted array of size n

Figure 1: Divide/Conquer/Combine Paradigm

3

http://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/dd_prog5.htm

Lecture 2 Ver 2.0 More on Document Distance 6.006 Spring 2008

5 4 7 3 6 1 9 2

3 4 5 7 1 2 6 9

i j

1 2 3 4 5 6 7 9
inc j

inc j
inc i

inc i
inc i

inc j
inc i

inc j

(array
 L
done)

(array
 R
done)

Figure 2: “Two Finger” Algorithm for Merge

The above operations give us T (n) = C1 + 2.T (n/2) + C.n���� � �� � ����
divide recursion merge

Keeping only the higher order terms,

T (n) = 2T (n/2) + C n·
= C n + 2 × (C n/2 + 2(C (n/4) + . . .))· · ·

Detailed notes on implementation of Merge Sort and results obtained with this improvement
are available here. With Merge Sort, the running time scales “nearly linearly” with the size
of the input(s) as n lg(n) is “nearly linear”in n.

An Experiment

Insertion Sort Θ(n2)
Merge Sort Θ(n lg(n)) if n = 2i

Built in Sort Θ(n lg(n))

• Test Merge Routine: Merge Sort (in Python) takes ≈ 2.2n lg(n) µs

• Test Insert Routine: Insertion Sort (in Python) takes ≈ 0.2n2 µs

• Built in Sort or sorted (in C) takes ≈ 0.1n lg(n) µs

The 20X constant factor difference comes about because Built in Sort is written in C while
Merge Sort is written in Python.

4

http://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/dd_prog6.htm

Lecture 2 Ver 2.0 More on Document Distance 6.006 Spring 2008

Cn

C(n/2) C(n/2)

C(n/4)

C C

Cn

Cn

Cn
Cn
Cn } lg(n)+1

 levels
including
 leaves

T(n) = Cn(lg(n)+1)
 = Θ(nlgn)

Figure 3: Efficiency of Running Time for Problem of size n is of order Θ(n lg(n))

Question: When is Merge Sort (in Python) 2n lg(n) better than Insertion Sort (in C)
0.01n2?
Aside: Note the 20X constant factor difference between Insertion Sort written in Python
and that written in C
Answer: Merge Sort wins for n ≥ 212 = 4096
Take Home Point: A better algorithm is much more valuable than hardware or compiler
even for modest n

See recitation for more Python Cost Model experiments of this sort . . .

5

