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Lecture 5: Hashing I: Chaining, Hash Functions 

Lecture Overview 

•	 Dictionaries and Python


Motivation
• 

Hash functions • 

•	 Chaining 

•	 Simple uniform hashing


“Good” hash functions
• 

Readings 

CLRS Chapter 11. 1, 11. 2, 11. 3. 

Dictionary Problem 

Abstract Data Type (ADT) maintains a set of items, each with a key, subject to 

•	 insert(item): add item to set 

•	 delete(item): remove item from set 

•	 search(key): return item with key if it exists 

•	 assume items have distinct keys (or that inserting new one clobbers old) 

•	 balanced BSTs solve in O(lg n) time per op. (in addition to inexact searches like 
nextlargest). 

•	 goal: O(1) time per operation. 

Python Dictionaries: 

Items are (key, value) pairs e.g. d = ‘algorithms’: 5, ‘cool’: 42 

d.items() [(‘algorithms’, 5),(‘cool’,5)] →
d[‘cool’] 42→
d[42] KeyError→
‘cool’ in d True →
42 in d False → 

Python set is really dict where items are keys. 
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Motivation 

Document Distance 

• already used in 

def count_frequency(word_list):

D = {}

for word in word_list:


if word in D:

D[word] += 1


else:

D[word] = 1


• new docdist7 uses dictionaries instead of sorting: 

def inner_product(D1, D2):

sum = φ. φ


for key in D1:

if key in D2:


sum += D1[key]*D2[key]


= optimal Θ(n) document distance assuming dictionary ops. take O(1) time ⇒ 

PS2 

How close is chimp DNA to human DNA? 
= Longest common substring of two strings 
e.g. ALGORITHM vs. ARITHMETIC. 

Dictionaries help speed algorithms e.g. put all substrings into set, looking for duplicates 
- Θ(n2) operations. 
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How do we solve the dictionary problem? 

A simple approach would be a direct access table. This means items would need to be 
stored in an array, indexed by key. 
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Figure 1: Direct-access table 

Problems: 

1. keys must be nonnegative integers (or using two arrays, integers) 

2. large key range = large space e.g. one key of 2256 is bad news. ⇒ 

2 Solutions: 

Solution 1 : map key space to integers. 

•	 In Python: hash (object) where object is a number, string, tuple, etc. or object 
implementing — hash — Misnomer: should be called “prehash” 

Ideally, x = y hash(x) = hash (y)•	 ⇔ 

•	 Python applies some heuristics e.g. hash(‘\φB ’) = 64 = hash(‘\φ \ φC’) 

•	 Object’s key should not change while in table (else cannot find it anymore) 

•	 No mutable objects like lists 
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Solution 2 : hashing (verb from ‘hache’ = hatchet, Germanic) 

• Reduce universe U of all keys (say, integers) down to reasonable size m for table 

• idea: m ≈ n, n =| k |, k = keys in dictionary 

• hash function h: U → φ, 1, . . . ,m − 1 
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Figure 2: Mapping keys to a table 

• two keys ki, kj � K collide if h(ki) = h(kj ) 

How do we deal with collisions? 

There are two ways 

1. Chaining: TODAY 

2. Open addressing: NEXT LECTURE 
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Chaining 

Linked list of colliding elements in each slot of table 
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Figure 3: Chaining in a Hash Table 

• Search must go through whole list T[h(key)] 

Worst case: all keys in k hash to same slot = Θ(n) per operation • ⇒ 

Simple Uniform Hashing - an Assumption: 

Each key is equally likely to be hashed to any slot of table, independent of where other keys 
are hashed. 

let n = � keys stored in table 

m = � slots in table 

load factor α = n/m = average � keys per slot 

Expected performance of chaining: assuming simple uniform hashing 

The performance is likely to be O(1 + α) - the 1 comes from applying the hash function 
and access slot whereas the α comes from searching the list. It is actually Θ(1 + α), even 
for successful search (see CLRS ). 

Therefore, the performance is O(1) if α = O(1) i. e. m = Ω(n). 
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Hash Functions  

Division Method: 

h(k) = k mod m 

•	 k1 and k2 collide when k1 = k2( mod m) i. e. when m divides | k1 − k2 | 

•	 fine if keys you store are uniform random 

•	 but if keys are x, 2x, 3x, . . . (regularity) and x and m have common divisor d then use 
only 1/d of table. This is likely if m has a small divisor e. g. 2. 

•	 if m = 2r then only look at r bits of key! 

Good Practice: A good practice to avoid common regularities in keys is to make m a

prime number that is not close to power of 2 or 10.

Key Lesson: It is inconvenient to find a prime number; division slow.


Multiplication Method: 

h(k) = [(a k) mod 2w] � (w − r) where m = 2r and w-bit machine words and a = odd · 
integer between 2(w − 1) and 2w .

Good Practise: a not too close to 2(w−1) or 2w .

Key Lesson: Multiplication and bit extraction are faster than division.
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Figure 4: Multiplication Method 
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