MIT OpenCourseWare <u>http://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Lecture 5: Hashing I: Chaining, Hash Functions

Lecture Overview

- Dictionaries and Python
- Motivation
- Hash functions
- Chaining
- Simple uniform hashing
- "Good" hash functions

Readings

CLRS Chapter 11. 1, 11. 2, 11. 3.

Dictionary Problem

Abstract Data Type (ADT) maintains a set of items, each with a key, subject to

- insert(item): add item to set
- delete(item): remove item from set
- search(key): return item with key if it exists
- assume items have distinct keys (or that inserting new one clobbers old)
- balanced BSTs solve in $O(\lg n)$ time per op. (in addition to inexact searches like nextlargest).
- goal: O(1) time per operation.

Python Dictionaries:

Items are (key, value) pairs e.g. d = `algorithms': 5, `cool': 42

Python set is really $\underline{\operatorname{dict}}$ where items are keys.

Motivation

Document Distance

• already used in

```
def count_frequency(word_list):
D = {}
for word in word_list:
    if word in D:
        D[word] += 1
    else:
        D[word] = 1
```

• new docdist7 uses dictionaries instead of sorting:

```
def inner_product(D1, D2):

sum = \phi. \phi

for key in D1:

if key in D2:

sum += D1[key]*D2[key]
```

 \implies optimal $\Theta(n)$ document distance assuming dictionary ops. take O(1) time

$\mathbf{PS2}$

How close is chimp DNA to human DNA? = Longest common substring of two strings e.g. ALGORITHM vs. ARITHMETIC.

Dictionaries help speed algorithms e.g. put all substrings into set, looking for duplicates - $\Theta(n^2)$ operations.

Lecture 5

How do we solve the dictionary problem?

A simple approach would be a direct access table. This means items would need to be stored in an array, indexed by key.

Figure 1: Direct-access table

Problems:

- 1. keys must be nonnegative integers (or using two arrays, integers)
- 2. large key range \implies large space e.g. one key of 2^{256} is bad news.

2 Solutions:

Solution 1: map key space to integers.

- In Python: hash (object) where object is a number, string, tuple, etc. or object implementing hash Misnomer: should be called "prehash"
- Ideally, $x = y \Leftrightarrow \operatorname{hash}(x) = \operatorname{hash}(y)$
- Python applies some heuristics e.g. $hash(\langle \phi B' \rangle) = 64 = hash(\langle \phi \rangle \phi C')$
- Object's key should not change while in table (else cannot find it anymore)
- No mutable objects like lists

Solution 2: hashing (verb from 'hache' = hatchet, Germanic)

- Reduce universe U of all keys (say, integers) down to reasonable size m for table
- idea: $m \approx n, n = \mid k \mid, k =$ keys in dictionary
- <u>hash function</u> h: $U \to \phi, 1, \dots, m-1$

Figure 2: Mapping keys to a table

• two keys $k_i, k_j \in K$ <u>collide</u> if $h(k_i) = h(k_j)$

How do we deal with collisions?

There are two ways

- 1. Chaining: TODAY
- 2. Open addressing: NEXT LECTURE

Chaining

Linked list of colliding elements in each slot of table

Figure 3: Chaining in a Hash Table

- Search must go through *whole* list T[h(key)]
- Worst case: all keys in k hash to same slot $\implies \Theta(n)$ per operation

Simple Uniform Hashing - an Assumption:

Each key is equally likely to be hashed to any slot of table, independent of where other keys are hashed.

let n = #keys stored in table m = #slots in table $load factor \alpha = n/m = average \#keys \text{ per slot}$

Expected performance of chaining: assuming simple uniform hashing

The performance is likely to be $O(1 + \alpha)$ - the 1 comes from applying the hash function and access slot whereas the α comes from searching the list. It is actually $\Theta(1 + \alpha)$, even for successful search (see CLRS).

Therefore, the performance is O(1) if $\alpha = O(1)$ i. e. $m = \Omega(n)$.

Hash Functions

Division Method:

 $h(k) = k \operatorname{mod} m$

- k_1 and k_2 collide when $k_1 = k_2 \pmod{m}$ i. e. when m divides $|k_1 k_2|$
- fine if keys you store are uniform random
- but if keys are $x, 2x, 3x, \ldots$ (regularity) and x and m have common divisor d then use only 1/d of table. This is likely if m has a small divisor e. g. 2.
- if $m = 2^r$ then only look at r bits of key!

Good Practice: A good practice to avoid common regularities in keys is to make m a prime number that is not close to power of 2 or 10.

Key Lesson: It is inconvenient to find a prime number; division slow.

Multiplication Method:

 $h(k) = [(a \cdot k) \mod 2^w] \gg (w - r)$ where $m = 2^r$ and w-bit machine words and a = odd integer between $2^{(w-1)}$ and 2^w .

Good Practise: a not too close to $2^{(w-1)}$ or 2^w .

Key Lesson: Multiplication and bit extraction are faster than division.

Figure 4: Multiplication Method