
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 5	 Hashing I: Chaining, Hash Functions 6.006 Spring 2008

Lecture 5: Hashing I: Chaining, Hash Functions

Lecture Overview

•	 Dictionaries and Python

Motivation
•

Hash functions •

•	 Chaining

•	 Simple uniform hashing

“Good” hash functions
•

Readings

CLRS Chapter 11. 1, 11. 2, 11. 3.

Dictionary Problem

Abstract Data Type (ADT) maintains a set of items, each with a key, subject to

•	 insert(item): add item to set

•	 delete(item): remove item from set

•	 search(key): return item with key if it exists

•	 assume items have distinct keys (or that inserting new one clobbers old)

•	 balanced BSTs solve in O(lg n) time per op. (in addition to inexact searches like
nextlargest).

•	 goal: O(1) time per operation.

Python Dictionaries:

Items are (key, value) pairs e.g. d = ‘algorithms’: 5, ‘cool’: 42

d.items() [(‘algorithms’, 5),(‘cool’,5)] →
d[‘cool’] 42→
d[42] KeyError→
‘cool’ in d True →
42 in d False →

Python set is really dict where items are keys.

1

Lecture 5 Hashing I: Chaining, Hash Functions 6.006 Spring 2008

Motivation

Document Distance

• already used in

def count_frequency(word_list):

D = {}

for word in word_list:

if word in D:

D[word] += 1

else:

D[word] = 1

• new docdist7 uses dictionaries instead of sorting:

def inner_product(D1, D2):

sum = φ. φ

for key in D1:

if key in D2:

sum += D1[key]*D2[key]

= optimal Θ(n) document distance assuming dictionary ops. take O(1) time ⇒

PS2

How close is chimp DNA to human DNA?
= Longest common substring of two strings
e.g. ALGORITHM vs. ARITHMETIC.

Dictionaries help speed algorithms e.g. put all substrings into set, looking for duplicates
- Θ(n2) operations.

2

Lecture 5	 Hashing I: Chaining, Hash Functions 6.006 Spring 2008

How do we solve the dictionary problem?

A simple approach would be a direct access table. This means items would need to be
stored in an array, indexed by key.

φ

1

2

key

key

key

item

item

item
.
.
.

Figure 1: Direct-access table

Problems:

1. keys must be nonnegative integers (or using two arrays, integers)

2. large key range = large space e.g. one key of 2256 is bad news. ⇒

2 Solutions:

Solution 1 : map key space to integers.

•	 In Python: hash (object) where object is a number, string, tuple, etc. or object
implementing — hash — Misnomer: should be called “prehash”

Ideally, x = y hash(x) = hash (y)•	 ⇔

•	 Python applies some heuristics e.g. hash(‘\φB ’) = 64 = hash(‘\φ \ φC’)

•	 Object’s key should not change while in table (else cannot find it anymore)

•	 No mutable objects like lists

3

Lecture 5 Hashing I: Chaining, Hash Functions 6.006 Spring 2008

Solution 2 : hashing (verb from ‘hache’ = hatchet, Germanic)

• Reduce universe U of all keys (say, integers) down to reasonable size m for table

• idea: m ≈ n, n =| k |, k = keys in dictionary

• hash function h: U → φ, 1, . . . ,m − 1

φ

1

m-1
k2

3k

k1

T

h(k1) = 1

. ..
.

.
.

. . .
.

.
..

.

U
k

k

k k

k

1

2

3

4

Figure 2: Mapping keys to a table

• two keys ki, kj � K collide if h(ki) = h(kj)

How do we deal with collisions?

There are two ways

1. Chaining: TODAY

2. Open addressing: NEXT LECTURE

4

Lecture 5 Hashing I: Chaining, Hash Functions 6.006 Spring 2008

Chaining

Linked list of colliding elements in each slot of table

1

.
..

.
U k

k

k k

k

1

2

3

4
k

.

.

.
4k

.
k 2

k3

h(k
1
) =

h(k2) =
h(k

4
)

Figure 3: Chaining in a Hash Table

• Search must go through whole list T[h(key)]

Worst case: all keys in k hash to same slot = Θ(n) per operation • ⇒

Simple Uniform Hashing - an Assumption:

Each key is equally likely to be hashed to any slot of table, independent of where other keys
are hashed.

let n = � keys stored in table

m = � slots in table

load factor α = n/m = average � keys per slot

Expected performance of chaining: assuming simple uniform hashing

The performance is likely to be O(1 + α) - the 1 comes from applying the hash function
and access slot whereas the α comes from searching the list. It is actually Θ(1 + α), even
for successful search (see CLRS).

Therefore, the performance is O(1) if α = O(1) i. e. m = Ω(n).

5

Lecture 5	 Hashing I: Chaining, Hash Functions 6.006 Spring 2008

Hash Functions

Division Method:

h(k) = k mod m

•	 k1 and k2 collide when k1 = k2(mod m) i. e. when m divides | k1 − k2 |

•	 fine if keys you store are uniform random

•	 but if keys are x, 2x, 3x, . . . (regularity) and x and m have common divisor d then use
only 1/d of table. This is likely if m has a small divisor e. g. 2.

•	 if m = 2r then only look at r bits of key!

Good Practice: A good practice to avoid common regularities in keys is to make m a

prime number that is not close to power of 2 or 10.

Key Lesson: It is inconvenient to find a prime number; division slow.

Multiplication Method:

h(k) = [(a k) mod 2w] � (w − r) where m = 2r and w-bit machine words and a = odd ·
integer between 2(w − 1) and 2w .

Good Practise: a not too close to 2(w−1) or 2w .

Key Lesson: Multiplication and bit extraction are faster than division.

w

k

ax

r

}

Figure 4: Multiplication Method

6

