
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 6	 Hashing II: Table Doubling, Karp-Rabin 6.006 Spring 2008

Lecture 6: Hashing II: Table Doubling,

Karp-Rabin

Lecture Overview

•	 Table Resizing

Amortization
•

•	 String Matching and Karp-Rabin

•	 Rolling Hash

Readings

CLRS Chapter 17 and 32.2.

Recall:

Hashing with Chaining:

1

.
..

.
U

k

k

k k

k

1

2

3

4
k

.

.

.
4k

.
k 2

k3

all possible
keys

n keys
in set DS

Cost : Θ (1+α)

h

table

m slots

collisions

expected size
α = n/m

}

Figure 1: Chaining in a Hash Table

Multiplication Method:

h(k) = [(a k) mod 2w] � (w − r)·
where m = table size = 2r

w = number of bits in machine words

a = odd integer between 2w−1 and 2w

1

Lecture 6 Hashing II: Table Doubling, Karp-Rabin 6.006 Spring 2008

w
k

ax

}

r

}
w-r

keep ignoreignore

≡

+

product
as sum

lots of mixing

Figure 2: Multiplication Method

How Large should Table be?

• want m = θ(n) at all times

• don’t know how large n will get at creation

m too small = slow; m too big = wasteful • ⇒ ⇒

Idea:

Start small (constant) and grow (or shrink) as necessary.

Rehashing:

To grow or shrink table hash function must change (m, r)

= must rebuild hash table from scratch ⇒
for item in old table:

insert into new table

= Θ(n + m) time = Θ(n) if m = Θ(n)
⇒

2

Lecture 6	 Hashing II: Table Doubling, Karp-Rabin 6.006 Spring 2008

How fast to grow?

When n reaches m, say

m + = 1? •
= rebuild every step ⇒
= n inserts cost Θ(1 + 2 + + n) = Θ(n2)⇒	 · · ·

•	 m ∗ = 2? m = Θ(n) still (r+ = 1)

= rebuild at insertion 2i
⇒
= n inserts cost Θ(1 + 2 + 4 + 8 + + n) where n is really the next power of 2 ⇒	 · · ·
= Θ(n)

•	 a few inserts cost linear time, but Θ(1) “on average”.

Amortized Analysis

This is a common technique in data structures - like paying rent: $ 1500/month ≈ $ 50/day

•	 operation has amortized cost T (n) if k operations cost ≤ k · T (n)

•	 “T (n) amortized” roughly means T (n) “on average”, but averaged over all ops.

•	 e.g. inserting into a hash table takes O(1) amortized time.

Back to Hashing:

Maintain m = Θ(n) so also support search in O(1) expected time assuming simple uniform
hashing

Delete:

Also O(1) expected time

•	 space can get big with respect to n e.g. n× insert, n× delete

solution: when n decreases to m/4, shrink to half the size = O(1) amortized cost •	 ⇒
for both insert and delete - analysis is harder; (see CLRS 17.4).

String Matching

Given two strings s and t, does s occur as a substring of t? (and if so, where and how many
times?)
E.g. s = ‘6.006’ and t = your entire INBOX (‘grep’ on UNIX)

3

Lecture 6	 Hashing II: Table Doubling, Karp-Rabin 6.006 Spring 2008

t

s

s

Figure 3: Illustration of Simple Algorithm for the String Matching Problem

Simple Algorithm:

Any (s == t[i : i + len(s)] for i in range(len(t)-len(s)))
- O(| s |) time for each substring comparison
= ⇒ O(| s | ·(| t | − | s |)) time
= O(| s | · | t |) potentially quadratic

Karp-Rabin Algorithm:

•	 Compare h(s) == h(t[i : i + len(s)])

•	 If hash values match, likely so do strings

– can check s == t[i : i + len(s)] to be sure ∼ cost O(| s |)

–	 if yes, found match — done

–	 if no, happened with probability < 1

= expected cost is O(1) per i.
|s|

⇒

need suitable hash function. •

•	 expected time = O(| s | + | t | ·cost(h)).

–	 naively h(x) costs | x |

–	 we’ll achieve O(1)!

–	 idea: t[i : i + len(s)] ≈ t[i + 1 : i + 1 + len(s)].

Rolling Hash ADT

Maintain string subject to

•	 h(): reasonable hash function on string

•	 h.append(c): add letter c to end of string

•	 h.skip(c): remove front letter from string, assuming it is c

4

Lecture 6	 Hashing II: Table Doubling, Karp-Rabin 6.006 Spring 2008

Karp-Rabin Application:

for c in s: hs.append(c)

for c in t[:len(s)]:ht.append(c)

if hs() == ht(): ...

This first block of code is O(| s |)

for i in range(len(s), len(t)):

ht.skip(t[i-len(s)])

ht.append(t[i])

if hs() == ht(): ...

The second block of code is O(| t |)

Data Structure:

Treat string as a multidigit number u in base a where a denotes the alphabet size. E.g. 256

•	 h() = u mod p for prime p ≈| s | or | t | (division method)

•	 h stores u mod p and | u |, not u

= smaller and faster to work with (u mod p fits in one machine word)
⇒

•	 h.append(c): (u · a + ord (c)) mod p = [(u mod p) · a + ord (c)] mod p

•	 h.skip(c): [u − ord (c) · (a|u|−1 mod p)] mod p

= [(u mod p) − ord (c) (a|u−1| mod p)] mod p
·

5

