MIT OpenCourseWare <u>http://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Lecture 6: Hashing II: Table Doubling, Karp-Rabin

Lecture Overview

- Table Resizing
- Amortization
- String Matching and Karp-Rabin
- Rolling Hash

Readings

CLRS Chapter 17 and 32.2.

Recall:

Hashing with Chaining:

Figure 1: Chaining in a Hash Table

Multiplication Method:

$$h(k) = [(a \cdot k) \mod 2^{w}] \gg (w - r)$$

where $m =$ table size $= 2^{r}$
 $w =$ number of bits in machine words
 $a =$ odd integer between 2^{w-1} and 2^{w}

Figure 2: Multiplication Method

How Large should Table be?

- want $m = \theta(n)$ at all times
- don't know how large n will get at creation
- m too small \implies slow; m too big \implies wasteful

Idea:

Start small (constant) and grow (or shrink) as necessary.

Rehashing:

To grow or shrink table hash function must change (m, r)

 $\implies \text{must rebuild hash table from scratch}$ for item in old table: insert into new table $\implies \Theta(n+m) \text{ time} = \Theta(n) \text{ if } m = \Theta(n)$

How fast to grow?

When n reaches m, say

• m + = 1?

 $= \Theta(n)$

- \implies rebuild every step
- \implies n inserts cost $\Theta(1+2+\cdots+n) = \Theta(n^2)$
- m * = 2? $m = \Theta(n)$ still (r + = 1) \implies rebuild at insertion 2^i $\implies n$ inserts cost $\Theta(1 + 2 + 4 + 8 + \dots + n)$ where n is really the next power of 2
 - a few inserts cost linear time, but $\Theta(1)$ "on average".

Amortized Analysis

This is a common technique in data structures - like paying rent: $1500/month \approx 50/day$

- operation has <u>amortized cost</u> T(n) if k operations cost $\leq k \cdot T(n)$
- "T(n) amortized" roughly means T(n) "on average", but averaged over all ops.
- e.g. inserting into a hash table takes O(1) amortized time.

Back to Hashing:

Maintain $m = \Theta(n)$ so also support search in O(1) expected time assuming simple uniform hashing

Delete:

Also O(1) expected time

- space can get big with respect to n e.g. $n \times$ insert, $n \times$ delete
- <u>solution</u>: when *n* decreases to m/4, shrink to half the size $\implies O(1)$ amortized cost for both insert and delete analysis is harder; (see CLRS 17.4).

String Matching

Given two strings s and t, does s occur as a substring of t? (and if so, where and how many times?)

E.g. s = 6.006 and t =your entire INBOX ('grep' on UNIX)

Figure 3: Illustration of Simple Algorithm for the String Matching Problem

Simple Algorithm:

Any (s == t[i : i + len(s)] for i in range(len(t)-len(s)))- O(|s|) time for each substring comparison $\implies O(|s| \cdot (|t| - |s|))$ time = $O(|s| \cdot |t|)$ potentially quadratic

Karp-Rabin Algorithm:

- Compare $h(s) == h(t[i:i + \operatorname{len}(s)])$
- If hash values match, likely so do strings
 - can check s == t[i: i + len(s)] to be sure $\sim cost O(|s|)$
 - if yes, found match done
 - if no, happened with probability $< \frac{1}{|s|}$ \implies expected cost is O(1) per *i*.
- need suitable hash function.
- expected time = $O(|s| + |t| \cdot cost(h))$.
 - naively h(x) costs $\mid x \mid$
 - we'll achieve O(1)!
 - idea: $t[i:i+len(s)] \approx t[i+1:i+1+len(s)].$

Rolling Hash ADT

Maintain string subject to

- h(): reasonable hash function on string
- h.append(c): add letter c to end of string
- h.skip(c): remove front letter from string, assuming it is c

Karp-Rabin Application:

```
for c in s: hs.append(c)
for c in t[:len(s)]:ht.append(c)
if hs() == ht(): ...
```

This first block of code is O(|s|)

```
for i in range(len(s), len(t)):
    ht.skip(t[i-len(s)])
    ht.append(t[i])
    if hs() == ht(): ...
```

The second block of code is O(|t|)

Data Structure:

Treat string as a multidigit number u in base a where a denotes the alphabet size. E.g. 256

- $h() = u \mod p$ for prime $p \approx |s|$ or |t| (division method)
- h stores $u \mod p$ and |u|, not u

 \implies smaller and faster to work with ($u \mod p$ fits in one machine word)

- h.append(c): $(u \cdot a + \text{ ord } (c)) \mod p = [(u \mod p) \cdot a + \text{ ord } (c)] \mod p$
- h.skip(c): $[u \operatorname{ord} (c) \cdot (a^{|u|-1} \mod p)] \mod p$ = $[(u \mod p) - \operatorname{ord} (c) \cdot (a^{|u-1|} \mod p)] \mod p$