MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 7: Hashing III: Open Addressing

Lecture Overview

- Open Addressing, Probing Strategies
- Uniform Hashing, Analysis
- Advanced Hashing

Readings

CLRS Chapter 11.4 (and 11.3.3 and 11.5 if interested)

Open Addressing

Another approach to collisions

- no linked lists
- all items stored in table (see Fig. 1)

item $_{2}$
item $_{1}$
item $_{3}$

Figure 1: Open Addressing Table

- one item per slot $\Longrightarrow m \geq n$
- hash function specifies order of slots to probe (try) for a key, not just one slot: (see Fig. 21
$\operatorname{Insert}(\mathrm{k}, \mathrm{v})$

```
for i in xrange(m):
    if T[h(k,i)] is None: # empty slot
        T[h(k,i)]=(k,v)\quad#
        return
raise 'full'
```

$<\mathrm{h}(\mathrm{k}, \varphi), \mathrm{h}(\mathrm{k}, 1), \ldots, \mathrm{h}(\mathrm{k}, \mathrm{m}-1)>\longleftarrow$ permutation
h: \cup x $\{\varphi, 1, \ldots, \mathrm{~m}-1\} \longrightarrow\{\varphi, 1, \ldots, \mathrm{~m}-1\}$

possible which
slot to probe
keys probe

Figure 2: Order of Probes

Example: Insert $k=496$

Figure 3: Insert Example

Search(k)

Delete(k)

- can't just set $T[h(k, i)]=$ None
- example: delete(586) $\Longrightarrow \operatorname{search(496)~fails~}$
- replace item with DeleteMe, which Insert treats as None but Search doesn't

Probing Strategies

Linear Probing

$h(k, i)=\left(\underline{h^{\prime}(k)}+i\right) \bmod m$ where $h^{\prime}(k)$ is ordinary hash function

- like street parking
- problem: clustering as consecutive group of filled slots grows, gets more likely to grow (see Fig. 4)

Figure 4: Primary Clustering

- for $0.01<\alpha<0.99$ say, clusters of $\Theta(\lg n)$. These clusters are known
- for $\alpha=1$, clusters of $\Theta(\sqrt{n})$ These clusters are known

Double Hashing
$h(k, i)=\left(h_{1}(k)+i . h_{2}(k)\right) \bmod m$ where $h_{1}(k)$ and $h_{2}(k)$ are two ordinary hash functions.

- actually hit all slots (permutation) if $h_{2}(k)$ is relatively prime to m
- e.g. $m=2^{r}$, make $h_{2}(k)$ always odd

Uniform Hashing Assumption

Each key is equally likely to have any one of the m ! permutations as its probe sequence

- not really true
- but double hashing can come close

Analysis

Open addressing for n items in table of size m has expected cost of $\leq \frac{1}{1-\alpha}$ per operation, where $\alpha=n / m(<1)$ assuming uniform hashing
Example: $\alpha=90 \% \Longrightarrow 10$ expected probes

Proof:
Always make a first probe.
With probability n / m, first slot occupied.
In worst case (e.g. key not in table), go to next.
With probability $\frac{n-1}{m-1}$, second slot occupied.
Then, with probability $\frac{n-2}{m-2}$, third slot full.
Etc. (n possibilities)

$$
\begin{aligned}
\text { So expected cost } & =1+\frac{n}{m}\left(1+\frac{n-1}{m-1}\left(1+\frac{n-2}{m-2}(\cdots)\right.\right. \\
\text { Now } \frac{n-1}{m-1} \leq \frac{n}{m} & =\alpha \text { for } i=\phi, \cdots, n(\leq m) \\
\text { So expected cost } & \leq 1+\alpha(1+\alpha(1+\alpha(\cdots))) \\
& =1+\alpha+\alpha^{2}+\alpha^{3}+\cdots \\
& =\frac{1}{1-\alpha}
\end{aligned}
$$

Open Addressing vs. Chaining

Open Addressing: better cache performance and rarely allocates memory
Chaining: less sensitive to hash functions and α

Advanced Hashing

Universal Hashing

Instead of defining one hash function, define a whole family and select one at random

- e.g. multiplication method with random a
- can prove Pr (over random h) $\{h(x)=h(y)\}=\frac{1}{m}$ for every (i.e. not random) $x \neq y$
- $\Longrightarrow O(1)$ expected time per operation without assuming simple uniform hashing! CLRS 11.3.3

Perfect Hashing

Guarantee $O(1)$ worst-case search

- idea: if $m=n^{2}$ then $\mathrm{E}[\sharp$ collisions $] \approx \frac{1}{2}$
\Longrightarrow get ϕ after $O(1)$ tries \ldots but $O\left(n^{2}\right)$ space
- use this structure for storing chains

Figure 5: Two-level Hash Table

- can prove $O(n)$ expected total space!
- if ever fails, rebuild from scratch

