MIT OpenCourseWare <u>http://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Lecture 7: Hashing III: Open Addressing

Lecture Overview

- Open Addressing, Probing Strategies
- Uniform Hashing, Analysis
- Advanced Hashing

Readings

CLRS Chapter 11.4 (and 11.3.3 and 11.5 if interested)

Open Addressing

Another approach to collisions

- no linked lists
- all items stored in table (see Fig. 1)

item ₂	
item ₁	
item ₃	

Figure 1: Open Addressing Table

- one item per slot $\implies m \ge n$
- hash function specifies <u>order</u> of slots to probe (try) for a key, not just one slot: (see Fig. 2)

Insert(k,v)

```
for i in xrange(m):

if T[h(k,i)] is None: \ddagger empty slot

T[h(k,i)] = (k,v) \ddagger store item

return

raise 'full'
```


Figure 2: Order of Probes

Example: Insert k = 496

Figure 3: Insert Example

Search(k)

for i in xrange(m):	
if $T[h(k,i)]$ is None:	<pre># empty slot?</pre>
return None	<pre># end of "chain"</pre>
elif $T[h(k,i)][\phi] == k$:	# matching key
return $T[h(k,i)]$	# return item
return None	. ↓ exhausted table

Delete(k)

- can't just set T[h(k,i)] =None
- $example: delete(586) \implies search(496)$ fails
- replace item with DeleteMe, which Insert treats as None but Search doesn't

Probing Strategies

Linear Probing

 $h(k,i) = (h'(k) + i) \mod m$ where h'(k) is ordinary hash function

- like street parking
- problem: *clustering* as consecutive group of filled slots grows, gets *more* likely to grow (see Fig. 4)

Figure 4: Primary Clustering

- for $0.01 < \alpha < 0.99$ say, clusters of $\Theta(\lg n)$. These clusters are known
- for $\alpha = 1$, clusters of $\Theta(\sqrt{n})$ These clusters are known

Double Hashing

 $h(k,i) = (h_1(k) + i \cdot h_2(k)) \mod m$ where $h_1(k)$ and $h_2(k)$ are two ordinary hash functions.

- actually hit all slots (permutation) if $h_2(k)$ is relatively prime to m
- e.g. $m = 2^r$, make $h_2(k)$ always odd

Uniform Hashing Assumption

Each key is equally likely to have any one of the m! permutations as its probe sequence

- not really true
- but double hashing can come close

Analysis

Open addressing for *n* items in table of size *m* has expected cost of $\leq \frac{1}{1-\alpha}$ per operation, where $\alpha = n/m(<1)$ assuming uniform hashing **Example**: $\alpha = 90\% \implies 10$ expected probes

Proof:

Always make a first probe. With probability n/m, first slot occupied. In worst case (e.g. key not in table), go to next. With probability $\frac{n-1}{m-1}$, second slot occupied. Then, with probability $\frac{n-2}{m-2}$, third slot full. Etc. (n possibilities)

So expected cost =
$$1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\cdots\right)\right)\right)$$

Now $\frac{n-1}{m-1} \le \frac{n}{m} = \alpha$ for $i = \phi, \cdots, n \le m$
So expected cost $\le 1 + \alpha (1 + \alpha (1 + \alpha (\cdots)))$
 $= 1 + \alpha + \alpha^2 + \alpha^3 + \cdots$
 $= \frac{1}{1-\alpha}$

Open Addressing vs. Chaining

Open Addressing: better cache performance and rarely allocates memory

Chaining: less sensitive to hash functions and α

Advanced Hashing

Universal Hashing

Instead of defining <u>one</u> hash function, define a whole family and select one at random

- e.g. multiplication method with random a
- can prove Pr (over random h) $\{h(x) = h(y)\} = \frac{1}{m}$ for every (i.e. not random) $x \neq y$
- $\implies O(1)$ expected time per operation <u>without</u> assuming simple uniform hashing! CLRS 11.3.3

Perfect Hashing

Guarantee O(1) worst-case search

- <u>idea</u>: if $m = n^2$ then $E[\sharp \text{ collisions}] \approx \frac{1}{2}$ $\implies \text{get } \phi \text{ after } O(1) \text{ tries } \dots \text{but } O(n^2) \text{ space}$
- use this structure for storing chains

Figure 5: Two-level Hash Table

- can prove O(n) expected total space!
- if ever fails, rebuild from scratch