MIT OpenCourseWare <u>http://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Lecture 8

Lecture 8: Sorting I: Heaps

Lecture Overview

- Review: Insertion Sort and Merge Sort
- $\bullet\,$ Selection Sort
- Heaps

Readings

CLRS 2.1, 2.2, 2.3, 6.1, 6.2, 6.3 and 6.4 $\,$

Sorting Review

Insertion Sort

Figure 1: Insertion Sort Example

Merge Sort

Divide *n*-element array into two subarrays of n/2 elements each. Recursively sort sub-arrays using mergesort. Merge two sorted subarrays.

Figure 2: Merge Sort Example

In-Place Sorting

Numbers re-arranged in the array A with at most a *constant* number of them sorted outside the array at any time.

Insertion Sort: stores key outside array $\Theta(n^2)$ in-place

Merge Sort: Need O(n) auxiliary space $\Theta(n \lg n)$ during merging

Question: Can we have $\Theta(n \lg n)$ in-place sorting?

Selection Sort

0.
$$i = 1$$

- 1. Find minimum value in list beginning with i
- 2. Swap it with the value in i^{th} position
- 3. i = i + 1, stop if i = n

Iterate steps 0-3 n times. Step 1 takes O(n) time. Can we improve to $O(\lg n)$?

Figure 3: Selection Sort Example

Heaps (Not garbage collected storage)

A heap is an array object that is viewed as a nearly complete binary tree.

Figure 4: Binary Heap

Data Structure

root A[i]Node with index iPARENT(i) = $\lfloor \frac{i}{2} \rfloor$ LEFT(i) = 2iRIGHT(i) = 2i + 1

Note: NO POINTERS!

length[A]: number of elements in the array

heap-size[A]: number of elements in the heap stored within array A

heap-size [A]: $\leq \text{length}[A]$

Max-Heaps and Min-Heaps

Max-Heap Property: For every node *i* other than the root $A[PARENT(i)] \ge A[i]$ Height of a binary heap $O(\lg n)$

MAX_HEAPIFY: $O(\lg n)$ maintains max-heap property

BUILD_MAX_HEAP: O(n) produces max-heap from unordered input array

HEAP_SORT: $O(n \lg n)$

Heap operations insert, extract_max etc $O(\lg n)$.

Max_Heapify(A,i)

$$\begin{array}{rcl} l &\leftarrow & \mathsf{left}(i) \\ r &\leftarrow & \mathsf{right}(i) \\ \mathsf{if} \ l \leq \mathsf{heap-size}(\mathsf{A}) \ \mathsf{and} \ A[l] > A[i] \\ & \mathsf{then} \ \mathsf{largest} \leftarrow l \\ & \mathsf{else} \ \mathsf{largest} \leftarrow i \\ \mathsf{if} \ r \leq \mathsf{heap-size}(\mathsf{A}) \ \mathsf{and} \ A[r] > \mathsf{largest} \\ & \mathsf{then} \ \mathsf{largest} \leftarrow r \\ & \mathsf{if} \ \mathsf{largest} \neq i \\ & \mathsf{then} \ \mathsf{exchange} \ A[i] \ \mathsf{and} \ A[\mathsf{largest}] \\ & \mathsf{MAX_HEAPIFY}(\mathsf{A}, \ \mathsf{largest}) \end{array}$$

This assumes that the trees rooted at left(i) and Right(i) are max-heaps. A[i] may be smaller than children violating max-heap property. Let the A[i] value "float down" so subtree rooted at index *i* becomes a max-heap.

Example

Figure 5: MAX HEAPIFY Example