
MIT OpenCourseWare 
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms
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Lecture 8: Sorting I: Heaps 

Lecture Overview 

• Review: Insertion Sort and Merge Sort 

Selection Sort • 

• Heaps 

Readings 

CLRS 2.1, 2.2, 2.3, 6.1, 6.2, 6.3 and 6.4 

Sorting Review 

Insertion Sort 

5 2 4 6 1 3 52 4 6 1 3

21 3 4 5 6 42 5 6 1 3

42 5 6 1 321 4 5 6 3

key
θ(n2) algorithm

Figure 1: Insertion Sort Example 

Merge Sort 

Divide n-element array into two subarrays of n/2 elements each. Recursively sort sub-arrays 
using mergesort. Merge two sorted subarrays. 
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2 4 5 7 2 3 61

1 2 2 3 4 5 6 7

L

A
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θ(n) time

θ(n) auxiliary 
      space

2 4 5 7 2 3 61

A[1: n/2] A[n/2+1: n] 

 want sorted A[1: n]
w/o auxiliary space?? 

Figure 2: Merge Sort Example 

In-Place Sorting 

Numbers re-arranged in the array A with at most a constant number of them sorted outside 
the array at any time. 

Insertion Sort: stores key outside array Θ(n2) in-place 

Merge Sort: Need O(n) auxiliary space Θ(n lg n) during merging 

Question: Can we have Θ(n lg n) in-place sorting? 

Selection Sort 

0. i = 1 

1. Find minimum value in list beginning with i 

2. Swap it with the value in ith position 

3. i = i + 1, stop if i = n 

Iterate steps 0-3 n times. Step 1 takes O(n) time. Can we improve to O(lg n)? 
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2 1 5 4

21 5 4

21 5 4

21 4 5

i = 1

θ(n2) time 
 in-place

Figure 3: Selection Sort Example 

Heaps (Not garbage collected storage) 

A heap is an array object that is viewed as a nearly complete binary tree. 

16 14 8 7 9 3 2 4 110

1 2 3 4 5 6 7 8 9 10
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16
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2 498
1

Figure 4: Binary Heap 

Data Structure 

root A[i] 
Node with index i 

PARENT(i) = �2 
i � 

LEFT(i) = 2i 
RIGHT(i) = 2i + 1 

Note: NO POINTERS! 
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length[A]: number of elements in the array


heap-size[A]: number of elements in the heap stored within array A


heap-size[A]: ≤ length[A]


Max-Heaps and Min-Heaps 

Max-Heap Property: For every node i other than the root A[PARENT(i)] ≥ A[i] 
Height of a binary heap O(lg n) 

MAX HEAPIFY: O(lg n) maintains max-heap property 

BUILD MAX HEAP: O(n) produces max-heap from unordered input array 

HEAP SORT: O(n lg n) 

Heap operations insert, extract max etc O(lg n). 

Max Heapify(A,i) 

l left(i)← 
r right(i)← 
if l ≤ heap-size(A) and A[l] > A[i] 

then largest l← 
else largest i← 

if r ≤ heap-size(A) and A[r] > largest 
then largest r← 

if largest = i 
then exchange A[i] and A[largest] 

MAX HEAPIFY(A, largest) 

This assumes that the trees rooted at left(i) and Right(i) are max-heaps. A[i] may be 
smaller than children violating max-heap property. Let the A[i] value “float down” so 
subtree rooted at index i becomes a max-heap. 
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Example
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MAX_HEAPIFY (A,2)
heap_size[A]  = 10

Exchange A[2] with A[4]
Call MAX_HEAPIFY(A,4) 
because max_heap property 
is violated

Exchange A[4] with A[9]
No more calls

Figure 5: MAX HEAPIFY Example 
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