Welcome to

6.007 - Applied Electromagnetics From Motors to Lasers

What is inside an iPhone?

iPhone Technical Specifications

Operating System: OS X

Memory: 4gb or 8gb versions available

Processor: 32-bit, 620 MHz core

<u>Muliti-Touch Display:</u>

3.5 inch 480 x 320-pixel HVGA resolution, 160 dpi

<u>Wireless:</u> Quad-band (850,900,1800,1900 MHz), WiFi (802.11b/g), EDGE, Bluetooth 2.0+EDR

<u>Digital Camera:</u>

2.0 mega pixels with 1200x1600 resolution

<u>Battery:</u> 1400 mAh, 3.7 V Rechargeable lithium-ion, Talk time: up to 8 hours, Standby time: up to 250 hours, Internet use: up to 6 hours, Video playback: up to 7 hours, Audio playback: up to 24 hours

Size: 4.5 x 2.4 x 0.46 in (115 x 61 x 11.6 mm)

Weight: 4.8 ounces (135 grams)

For more views of iPhone under the hood see <u>http://www.eetimes.eu/200001828</u> <u>http://www.eetimes.eu/200001864</u>

$$\begin{array}{c}
\underline{Capacitors} \\
++++++++ \\
+\sigma \\
C = \epsilon_{o}\epsilon_{r}\frac{A}{d} \\
q = Cv \\
-\sigma \\
\underline{Maxwell's Equations} \\
\hline
\int_{S} \epsilon_{o}\overline{E} \cdot d\overline{A} = \int_{V} \rho dV \quad \oint_{S} \overline{B} \cdot d\overline{A} = 0 \\
\hline
\int_{C} \overline{E} \cdot d\overline{l} = -\frac{d}{dt} \left(\int_{S} \overline{B} \cdot d\overline{A} \right) \quad \oint_{C} \overline{H} \cdot d\overline{l} \\
= \int_{S} \overline{J} \cdot d\overline{A} + \frac{d}{dt} \int_{S} \epsilon E dA
\end{array}$$

Capacitors in the iPhone

<u>iPhone Capacitive Touch Sensor</u>

Liquid Crystal Display (LCD) and Touch Panel

Iphone image by Sean MacEntee http://www.flickr.com/photos/smemon/4679667189/ sizes/l/in/photostream/ on flickr

<u>Accelerometer</u>

... detects when you rotate the iPhone from Portrait to Landscape, and automatically rotates the content of the display

Accelerometers are Everywhere

Capacitors in the iPhone

Liquid Crystal Displays

Nexus One: Organic LED Display

Capacitors in the iPhone

MOSFET: Transistor in a Nutshell Conduction electron flow Gate Si/SiGe Body (80 nm) p+ Ge (25 nm) Control (60 nm) Gate Drain Source Image courtesy of J. Hoyt Group, EECS, MIT. Photo by L. Gomez **Buried Oxide** (155 nm) **Control Gate** Image courtesy of J. Hoyt Group, EECS, MIT. Photo by L. Gomez $q_{channel} = Cv_{gate}$ Semiconductor $i_{sd} = v_{sd} / R = v_{sd} \times G$ $i_{sd} \propto v_{sd} \times q_{channel}$

Transistor is an electrically (capacitively) controlled switch

8GB iPhone employs Samsung's 65-nanometer 8-Gbyte MLC NAND flash

Capacitors in the iPhone

Image courtesy of Department of Electrical Engineering and Computer Science, MIT. Photo by L. Gomez, J. Hoyt

Three Big Ideas in 6.007

iPhone Components	6.007 Concepts
Touchpad	Capacitors
Display	Lights, Waveguides, Filters
Memory Card SIM	QM Tunneling Phenomena
Camera	Light Absorption, Photodetectors
Battery	Chemical Energy Conversion / Storage
Antennas	EM waves
Accelerometer, Speaker	Mechanical Energy Conversion, MEMS
LEDs	Solid State Lighting

iPhone Components	6.007 Concepts	
Touchpad	Capacitors	
Accelerometer, Speaker	Mechanical Energy Conversion, MEMS	$\left\langle \right\rangle$
Battery	Chemical Energy Conversion	
Antennas	EM waves	
Camera	Light Absorption, Photodetectors	
Display	Lights, Waveguides, Filters, Eyes	
Memory Card SIM	QM Tunneling Phenomena	
LEDs	Solid State Lighting	

	Lect	Subject
	-	Resistration Day
	1	Motors to Lasers Intro - Phone Components
	2	Energy and Power (Go Cart)
	3	Electrical vs. Gas Engine
	4	Energy in Electrical Systems
Γ	LAB	DC Motor+MatLab+Oscilloscope
/	n	Tutonal Electrostatics (Gaussis Law and Baundany Conditions)
	-	Electrostatics (Gauss's Law and Boundary Conditions)
	7	Forces in Nagnetostatics (Actuators)
_	8	Practical MQS Systems (Torroids, Solenoids, Magnets)
$\mathbf{\pi}$	TZ	Tutorial
/	9	Magnetic Materials
	10	Faraday's Law (Induced emf)
	11	Magnetic Circuits and Transformers
	14	Porces via Energy Conservation (Chergy Method)
	73	Monday Schedule of Classes (Tutorials Held)
▰	13	Stored Energy and Magnetic Actuators
	14	Energy Conversion Systems: Rail Ouns
	15	Dielectrics and Dipoles
	LAB	Shooting Magnets
	T4	Tutorial
	10	Practical Dielectrics
	18	Linear Systems Complex Numbers and Phasers
-	19	Electromagnetic Waves (Wave Equation)
~	T5	Tutorial
	-	Exam
	20	Examples of Uniform EM Plane Waves (Poynting vector)
	21	Generating EM Waves: Antennas
-	74	Interaction of Atoms and EM waves (Lorentz Oscillator)
	71	Lossy FALVinves
	24	Polarized Light and Polarizers
7	25	Birefringence
	26	Liquid Crystal Display Technology
	LAB	Liquid Crystal Displays
ѫ	17	Tutorial
·	20	Diffraction and Unitraction
	28	Beflection and Transmission of FM Waves
	30	EM Reflection and Transmision in Layered Media
	TB	Tutorial
	31	Optical Resonators
	32	Refraction and Snell's Law
	33	Freshel Equations and EM Power Flow
	LAB	Spectrometer
	19	Tutonal
	35	Wavepackets
*	36	Photon - Quantum of Energy
/ ·	37	Photon Momentum and Uncertainty
	38	Examples of Heisenberg Uncertainty Principle
	-	Patrint's May - Househing
	-	Exam
	39	Schrodinger Equation (drop date)
\mathbf{A}	40	Particle in a box
	LAB	Quantum Mechanical Tunneling
	T10	Tutorial
\mathbf{A}	41	Reflection from a potential step
	42	Teneling application (Flash Hernory, STH)
	44	From Atoms to Aplecules
	T11	Tutorial
	45	Semiconductors
Y	46	LEDs
	47	Photodetectors, Solar Cells
	48	Electron Wavepackets and Microscopic Ohm's Law
	LAB	Extra Credit Lab
	49	Quantum Superposition and Ontical Transitions
	50	Lasers
	51	Final Fram Review

Inductors in the iPhone

$$\int_{C} \overline{H} \cdot d\overline{l}$$

$$\bigcirc = \int_{S} \overline{J} \cdot d\overline{A} + \frac{d}{dt} \int_{S} \epsilon E dA$$

not a simple inductor (not magnetostatics)

Magnetometers

Lorentz Force Law...

 $\overline{f} = q(\overline{E} + \overline{v} \times \mu_0 \overline{H})$

What is this doing in the iPhone 3G and Nexus One?

Nexus One picture in public domain

Course Details

Recommended Reading

Applied Electromagnetics (Third edition) L. C. Shen, J. A. Kong, PWS publishing, 1995.

An Introduction to Quantum Physics A.P. French, E. F. Taylor W. W. Norton & Co, 1978.

Image is in the public domain

<u>Grading</u>

5	Labs	10%
10	Problem Sets	20%
2	Midterms	40%
1	Final Exam	30%

Energy Conversion in the iPhone

Energy Conversion in the iPhone

Heat: Charging and discharging transistors (capacitors)

Microprocessor energy consumption:

Variable speed microprocessor 620 MHz at 0.45 mW/MHz Running 7 hours of video at ~280mW (620 MHz) = <u>1960 mWh</u> Running 8 hours of audio at <280mW (<620 MHz) < <u>2240 mWh</u>

Visible Light: LED in Display:

 $3mW/cm^2$ for ~40 cm² = 120 mW (40%) of processor power 7 hours of displaying = <u>840 mWh</u>

Radio: Antenna radiation:

130mW of radiation (for 135g iPhone \rightarrow 0.974 W/kg) 8 hours of operation = <u>1040 mWh</u> (Note: allowed FCC rating for portable appliances - 1.6 W of radiation per kg)

Total consumption over 7 hours of video (microprocessor+display) = 2800 mWh

Total consumption over 8 hours of talk (microprocessor+antenna) = 3280 mWh

Battery capacity 1400 mAh at 3.7V = 5180 mWh

<u>Good Engineers</u> ...

- Place *ethics* and *morals* above all else
- Are team players
- Follow a deterministic design process
- Follow a schedule
- Document their work
- Never stop learning

MIT OpenCourseWare http://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.