Faraday's Law (Induced emf)

Reading - Shen and Kong - Ch. 16

<u>Outline</u>

- •Magnetic Flux and Flux Linkage
- •Inductance

•Stored Energy in the Magnetic Fields of an Inductor

- •Faraday's Law and Induced Electromotive Force (*emf*)
- •Examples of Faraday's Law

Flux Linkage of a Solenoids

FOR A SUFFICIENTLY LONG SOLENOID...

$$H_{inside} = \frac{Ni}{h}$$
$$B_{inside} = \mu_o \frac{Ni}{h}$$
$$\Phi_{inside} = \mu_o \frac{Ni}{h} A$$

In the solenoid the individual flux lines pass through the integrating surface S more than once

- B = Magnetic flux density inside solenoid
- A = Solenoid cross sectional area
- N = Number of turns around solenoid

$$\lambda = N\Phi = NBA = \mu_o \frac{N^2 i}{h}A$$

... flux linked by solenoid

Inductors

... is a passive electrical component that stores energy in a magnetic field created by the electric current passing through it. (This is in equivalence to the energy stored in the electric field of capacitors.)

IN GENERAL:

For a linear coil:
$$\lambda = N\Phi = \mu_o \frac{N^2 i}{h} A = Li \implies L = \mu_o \frac{A}{h} N^2$$

The magnetic permeability of the vacuum: $\mu_o = 4\pi \times 10^{-7} \, \text{H/m}$ [henry per meter]

An inductor's ability to store magnetic energy is measured by its inductance, in units of <u>henries</u>. The henry (symbol: H) is named after Joseph Henry (1797-1878), the American scientist who discovered electromagnetic induction independently of and at about the same time as Michael Faraday (1791-1867) in England.

Equivalence of units:

$$H = \frac{Wb}{A} = \frac{V \cdot s}{A} = \Omega \cdot s = \frac{J}{A^2} = \frac{J/C \cdot s}{C/s} = \frac{J \cdot s^2}{C^2} = \frac{MBA}{C^2} = \frac{\mu_2}{C^2} \frac{M^2 i}{kg} A$$

Stored Energy in an Inductor

FROM 8.02:
$$v(t) = L \frac{di(t)}{dt} \leftarrow \text{voltage over an inductor}$$

$$P_{elec} = v \cdot i = L \frac{di}{dt} \cdot i = \frac{1}{2} L \frac{d}{dt} i^2$$

If L is not a function of time ...

$$P_{elec} = \frac{d}{dt} \left(\frac{1}{2}Li^2\right) = \frac{dW_s}{dt}$$

... where E is energy stored in the field of the inductor any instant in time

$$W_s(i,r) = \frac{1}{2}Li^2$$

For a linear coil: $L=\mu_orac{A}{h}N^2$

Calculation of energy stored in the inductor

$$W_{s} = \int vi \, dt = \int i \frac{d\lambda}{dt} dt = \int i \, d\lambda = \frac{1}{2} \frac{\lambda_{0}^{2}}{L}$$

Note that flux is

$$\lambda = N\phi = NA\mu_0H_z$$

And that inductance is $L = \mu_0 \frac{A}{h} N^2$

Energy stored is

$$W_{s} = \frac{1}{2} \frac{\left(NA\mu_{0}H_{z}\right)^{2}}{\mu_{0}\frac{A}{h}N^{2}} = \frac{1}{2} \mu_{0}H_{z}^{2}Ah$$

$$\frac{W_{s}}{Volume} = \frac{1}{2} \frac{\left(NA\mu_{0}H_{z}\right)^{2}}{\mu_{0}\frac{A}{h}N^{2}} = \frac{1}{2} \mu_{0}H_{z}^{2}$$

Energy stored per volume

General: Stored Energy in the Coil

FROM 8.02:
$$v(t) = L \frac{di(t)}{dt} \quad \leftarrow \text{ voltage over an inductor}$$

Since
$$\lambda = Li$$
 then $v(t) = \frac{d\lambda(t)}{dt}$

 \rightarrow Change in the magnetic flux within the inductor generates voltage

$$P_{elec} = v \cdot i = \frac{d\lambda}{dt} \cdot i$$
$$W_s = \int P_{elec} dt = \int i \frac{d\lambda}{dt} dt = \int i d\lambda$$

... where W_s is energy stored in the field of the inductor any instant in time

Induced electromotive force (emf)

from Chabay and Sherwood, Ch 22

THEREFORE, THERE ARE TWO WAYS TO PRODUCE ELECTRIC FIELD

(1) Coulomb electric field is produced by electric charges according to Coulomb's law:

ΘB

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}$$

(2) Non-Coulomb electric field E_{NC} is associated with time-varying magnetic flux density dB/dt

For a solenoid, E_{NC}

- curls around a solenoid
- is proportional to -dB/dt through the solenoid
- <u>decreases with 1/r</u>, where r is the radial distance from the solenoid axis

END VIEW: The non-Coulomb electric field drives a current I_2 in the ring

<u>Magnetically Induced</u> <u>(non-Coulomb) E_{NC} Drives Current in a Loop Surrounding the Solenoid</u>

This pattern of surface charge is impossible, because it would imply a huge *E* at the marked location, and in the wrong direction !

What if we double the value of r_2 ? \rightarrow Still get the same *emf* around the loop

emf in a ring encircling the solenoid is the same for any radius

Will Current Run in these Wires?

long solenoid with varying B.

<u>Question:</u>

If we use a solenoid with twice the cross-sectional area, but the same magnetic flux density (same magnitude of I_1), what is the magnitude of I_2 ?

We can build the solenoid with the larger cross-sectional area, 2^*A , out of two solenoids with the initial crosssectional area, A. Each of the smaller solenoids would induce current $I_{2^{1}}$ so by superposition, for the twice-asbig solenoid the current would be twice-as-big !

 $|emf| = |\frac{d}{dt}(B_1 A)|$

$$|emf| = |\frac{d}{dt}(B_1 A)| = |\frac{d}{dt}(\Phi_{mag})|$$
$$\Phi_{mag} = \int \overline{B} \cdot d\hat{a} = \int B_{\perp} da$$

Faraday's Law

The induced *emf* along a round-trlp path is equal to the rate of change of the magnetic flux on the area encircled by the path.

$$emf = -\frac{d\Phi_{mag}}{dt}$$

$$\oint \overline{E}_{NC} \cdot d\hat{l} = -\frac{d}{dt} \int \overline{B} \cdot d\hat{a}$$

Faraday's Law and Motional emf

What is the emf over the resistor?

$$emf = \frac{\Delta \Phi_{mag}}{\Delta t} = BLv$$

There is an increase in flux through the circuit as the bar of length *L* moves to the right (orthogonal to magnetic field H) at velocity, *v*.

Terminal Voltages & Inductance

Assume:

- Perfectly conducting wire
- Stationary contour C
- Negligible magnetic flux at the terminals

$$emf = d\lambda/dt$$

If the current *i* created the magnetic flux density *B*, then the flux linkage is given by $\lambda = Li$. In this case, *emf* = *L di/dt*. *L* is the self inductance of the coil.

Faraday's Law for a Coil

The induced emf in a coil of N turns is equal to N times the rate of change of the magnetic flux on one loop of the coil.

$$\underline{Electric Fields} \qquad \underline{Magnetic Fields}$$

$$\oint_{S} \epsilon_{o} \overline{E} \cdot d\overline{A} = \int_{V} \rho dV \qquad \qquad \oint_{S} \overline{B} \cdot d\overline{A} = 0$$

$$= Q_{enclosed}$$

$$\underline{GAUSS} \qquad \underline{GAUSS}$$

$$FARADAY \qquad AMPERE$$

$$\oint_{C} \overline{E} \cdot d\overline{l} = -\frac{d}{dt} \left(\int_{S} \overline{B} \cdot d\overline{A} \right) \qquad \qquad \bigoplus_{C} \overline{H} \cdot d\overline{l}$$

$$= \int_{S} \overline{J} \cdot d\overline{A} + \frac{d}{dt} \int_{S} \epsilon E dA$$

<u>Next</u> ...

- MAGNETIC MATERIALS
- MAGNETIC CIRCUITS

Image is in the public domain

KEY TAKEAWAYS

THERE ARE TWO WAYS TO PRODUCE ELECTRIC FIELD

(1)Coulomb electric field is produced by electric charges according to Coulomb's law (2)Non-Coulomb electric field E_{NC} is due to time-varying magnetic flux density dB/dt

Faraday's Law: The induced emf along a round-trlp path is equal to the rate of change of the magnetic flux on the area encircled by the path.

Lenz's Rule:

The induced electric field would drive the current in the direction to make the magnetic field that attempts to keep the flux constant

MIT OpenCourseWare http://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.