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Review of the Lorentz Oscillator Model 
 
Complex index of refraction – what does it mean? 
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Microscopic model for plasmas and metals 
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True / False 

1. In the Lorentz oscillator model of an atom, the electron is 
bound to the nucleus by a spring whose spring constant is the 
same for any atom. 

2.  The following is the differential equation described by the 
Lorentz oscillator model: 

3. For dielectrics, we can approximate the index of refraction as 
the square root of the dielectric constant. 
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Microscopic Description of Dielectric Constant 

Damping 

Electron mass Restoring force �E field 
(binding electron & nucleus) force 

Bx Nucleus 

“spring” 
Electron 
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Solution using complex variables 
Lets plug-in the expressions for      and   y

into the differential equation from slide 3:  
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Oscillator Resonance 

E (t t
y ) = Re E ejω

1
{ y

q
}

y = Ey jωt
m (ω2

0 − ω2) + jωγ y(t) = Re{ye }

Driven harmonic oscillator:  Amplitude and Phase depend on frequency 

Low  frequency At resonance High frequency 

medium large amplitude vanishing 
amplitude  amplitude 

 yDisplacement,    

yDisplacement,     90º out of phase with Ey yDisplacement    and   Ey

Eyin phase with       in antiphase 
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Polarization 

Since charge displacement, y, is directly related to polarization, P, of our material 
we can then rewrite the differential equation:  

� � �D = εoE + P
ŷFor linear polarization in     direction 

Py = Nqy

d d
( + γ + ω2 Nq2

o)Py(t) = Ey(t) = εoω
2 t

2 dt m pEy( )
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εom
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Microscopic Lorentz Oscillator Model 
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Behavior of a driven (and damped) harmonic oscillator can be summarized as follows 

This type of response of bound charges is typical for many materials 
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Complex Refractive Index 

1
vp = √
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Absorption Coefficient 

E

1
n = √

√
εr +

2

√
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√
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√
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2

˜(t, z) = Re{E e−αz/2ej(ωt−k0nz)
0 }

Absorption Refractive 
index 
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Absorption and Reflection 

E(t, z) = Re{E /2ej(ωt−k
0e

−αz 0nz)}

Absorption Refractive 
coefficient index 

I(z) = Ioe
−αz Beer-Lambert Law or Beer’s Law 

˜
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T A R T 
− 2ω γ + 2ω γ ω

T Absorp. Reflective ransmissive Transmissive 

Different resonant frequencies 

0 p0

0ω

Photograph by Hey Paul on Flickr. 

•  Transmissive ω <ω0 − γ 2

•  Absorptive ω0 − γ 2 <ω <ω0

•  Reflective ω0 + γ 2 <ω <ω p

•  Transmissive ω >ω p
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Plasma in Ionosphere 
Plasma is an ionized gas consisting of positively charged molecules (ions) and 

negatively charged electrons that are free to move. 
 

Plasma exists naturally in what we call ionosphere (80 km ~ 120 km above the 
surface of the Earth).  Here the UV light from the Sun ionizes air molecules. 

Aurora Australis 
Image is in the public domain 
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What happens when 
the dielectric constant 

is negative? 

ω < ωp ε < 0

ω > ωp ε > 0

If ε < 0 then n is imaginary 

γ = 0Plasmas (which we will assume to be lossless,            ) 
        … have no restoring force for electrons,  ωo = 0
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Plasma Frequency 

Ne
ωp =

√
2

εom

(1012M−3)(1.602x10−19C)2
=

(8.854× 10−12F/M)(9.109× 10−31Kg)

.= 5 64× 107rad/sec

= 2π × (8.98MHz)

AM radio is in the range 520-1610 kHz Reflected 
FM radio in in the range 87.5 to 108 MHz  Transmitted 
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AM radio 
 transmitter 

The Ionosphere and Radio Wave Propagation  
The ionosphere is important for radio wave (AM only) propagation.... 

Ionosphere is composed of the D, E, and F layers. 
The D layer is good at absorbing AM radio waves. 

 D layer disappears at night...the E and F layers bounce the waves back to the Earth. 
 This explains why radio stations adjust their power output at sunset and sunrise. 
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Why do metals reflect light? 

© Kyle Hounsell. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/fairuse. 
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Metals are Lossy Why is there a discontinuity here? 
εo γ    or     must change for this to be true 

Metals have loss γ = 0
but have no restoring force for electrons  

ωo = 0

2
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Drude Model for metals 
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Behavior of Metals 
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Image by  Kate Hopkins http://www.flickr.com/photos/accidentalhedonist/5200667428/ on flickr 
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Key Takeaways 
Nucleus 

Electron 
“spring” Lorentz Oscillator Model 

d2y
= −mω2 dy

m oy + qEy
dt2

−mγ
dt

ω2

� p �P (ω) = εoE(ω)
2 ñ = n− jκ

(ωo − ω2) + jωγ

ε = εr − jεi α = 2koκ

E(t, z) = Re{Ẽ e−αz/2ej(ωt−k0nz)
0 }

Decay 
Absorption Refractive 
coefficient index 

•  Transmissive ω <ω0 − γ 2

•  Absorptive ω − γ 2 <ω <ω
I(z) = I e Beer 0 0

o
−αz s Law 

•  Reflective ω0 + γ 2 <ω <ω p

•  Transmissive ω >ω p
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