Light Reflectors and Optical Resonators

Outline
Review of Wave Reflection
Reflection and Interference
Fiber for Telecommunications
Optical Resonators

Reflection of a
Normally Incident
EM Wave from a Perfect Conductor

Image by Theogeo http:/ / www. flickr. com/ photos/theogeo/ 1102 816166/ on flickr

Standing wave pattern of the E-field

Standing wave pattern of the H -field

Reflection \& Transmission of EM Waves at Boundaries

$$
\begin{aligned}
& \vec{E}_{1}=\vec{E}_{i}+\vec{E}_{r} \\
&=\hat{x}\left(E_{o}^{i} e^{-j k_{1} z}+E_{o}^{r} e^{+j k_{1} z}\right) \begin{aligned}
\vec{E}_{2} & =\vec{E}_{t} \\
& =\widehat{x} E_{o}^{t} e^{-j k_{2} z} \\
& \\
\vec{H}_{1}= & \vec{H}_{i}+\vec{H}_{r} \\
=\hat{y}\left(\frac{E_{o}^{i}}{\eta_{1}} e^{-j k_{1} z}-\frac{E_{o}^{r}}{\eta_{1}} e^{+j k_{1} z}\right) & \begin{aligned}
\vec{H}_{2} & =\vec{H}_{r} \\
& =\widehat{y} \frac{E_{o}^{t}}{\eta_{2}} e^{-j k_{2} z}
\end{aligned} \\
& \\
\bar{E}_{1(z=0)} & =\bar{E}_{2(z=0)} \\
\bar{H}_{1(z=0)} & =\bar{H}_{2(z=0)}
\end{aligned}
\end{aligned}
$$

Reflection of EM Waves at Boundaries

$$
\begin{aligned}
& \vec{E}_{1}(z=0)=\vec{E}_{2}(z=0) \\
& \quad E_{o}^{i}+E_{o}^{r}=E_{o}^{t} \\
& \vec{H}_{1}(z=0)=\vec{H}_{2}(z=0)
\end{aligned}
$$

$$
\frac{E_{o}^{i}}{\eta_{1}}-\frac{E_{o}^{r}}{\eta_{1}}=\frac{E_{o}^{t}}{\eta_{2}} \quad \eta=\sqrt{\frac{\mu}{\epsilon}}
$$

$$
r=\frac{E_{o}^{r}}{E_{o}^{i}}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}
$$

$$
t=\frac{E_{o}^{t}}{E_{o}^{i}}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}
$$

REFLECTION COEFFICIENT

TRANSMSION COEFFICIENT

(note that sign of r depends on
the relative values of η_{2} and η_{1})

a) Plot of $\left|E_{y, \text { total }}\right|$ with medium 1 being air, medium 2, $\mathrm{n}_{2}=2$. Normal incidence.
b) Plot of $\left|E_{y, \text { total }}\right|$ with medium 1 having $\mathrm{n}_{1}=2$, medium 2 being air. Normal incidence.
c) Plot of $\left|E_{y, \text { total }}\right|$ with medium 1 being air, medium 2 being a perfect conductor
d) Plot of $\left|H_{y, \text { total }}\right|$ with medium 1 being air, medium 2 being a perfect conductor
e) Plot of $\left|E_{y, \text { total }}\right|$ with medium 1 having $\mathrm{n}_{1}=2$, medium 2 being air. Angle of incidence greater than critical angle.
f) Plot of $\left|E_{y, \text { total }}\right|$ with angle of incidence equal to the Brewster angle.
g) Plot of $\left|E_{y, \text { total }}\right|$ with angle of incidence equal to the Brewster angle. Medium 2 is air.

Remote Sensing of the Environment ... using radar

EXAMPLE: MEASUREMENT OF THICKNESS OF POLAR ICE CAPS

Reflectometry

... measurement of distance to a target by identifying the nodes in the standing wave pattern

Today's Culture Moment

The Greenhouse Effect

Sunlight is reradiated as heat and trapped by greenhouse gasses such as carbon dioxide. Too much carbon dioxide, however, causes the planet to heat up more than usual.

Deploy Alumi num Rafts over Dead Ocean Areas ?

Net excess energy input into planet Earth $1.6 \mathrm{~W} / \mathrm{m}^{2}$.
Illuminance on ground level is $\sim 1000 \mathrm{~W} / \mathrm{m}^{2}$
\rightarrow We need to reflect $1.6 / 1000$ of energy back to Balance the Energy IN/OUT
Oceans are 90% absorptive (10\% reflective)
Aluminum is 88% reflective on the shiny side and 80% reflective on the dull side. (Frosted silica might also be able to be used as a reflector)

How much of ocean area do we need to cover with 80% reflective sheets of aluminum to balance the energy IN/OUT ? $(1.6 / 1000) /(80 \%-10 \%)=0.23 \%$ (of the Earth's surface area)

Earth surface area $=5100$ million km^{2}
We need to cover $=1.2$ million km^{2}
\rightarrow equivalent to ~ 100 years of today's Aluminum production (assuming $50 \mu \mathrm{~m}$ thick Al foil)

Dead ocean zones $=0.24$ million km^{2}
Ice fields:
North Pole $=9$ to 12 million km^{2}

Image is in the public domain Greenland ice sheet $=1.7$ million km^{2}
South Pole $=14$ million km^{2}

© Kyle Hounsell. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
http:// ocw. mit. edu/ fairuse

Three Ways to Make a Mirror

Dielectric Mirrors

...can be $\mathbf{~} 99 \%$ reflective

Simple dielectric mirrors consist of stacked of layers of high and low refractive index. The layers are chosen such the path-length differences of reflections from low to high index layers are integer multiples of wavelengths.
Similarly, reflections from low-index layers have path length difference of half a wavelength, but add constructively because of 180 degree phase shift from the reflection. For normal incidence, these optimized thicknesses are a quarter of a wavelength

Thin layers with a high refractive index n_{HI} are interleaved with thicker layers with a
lower refractive index n_{LO}.
The path lengths I_{A} and I_{B} differ by exactly one wavel ength, which leads to constructive interference.

Opals

... are an example of dielectric mirrors

Colors with $\lambda=2 d \sin (\alpha)$ have constructive interference

Image is in the public domain Precious opal consists of spheres of silica of fairly regular size, packed into close-packed planes that are stacked together with characteristic

© Unique Opals. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Fiber to the Home

2.4 Gbps shared by

Image by Dan Tentler http:/ / www.flickr.com/ photos/ vissago/ 4634464205/ on flickr

Fiber to the Home

An ONT (Optical Network Terminal) is a media converter that is installed by Verizon either outside or inside your premises, during FiOS installation. The ONT converts fiber-optic light signals to copper/ electric signals. Three wavelengths of light are used between the ONT and the OLT (Optical Line Terminal):

- $\lambda=1310 \mathrm{~nm}$ voice/ data transmit
- $\lambda=1490 \mathrm{~nm}$ voice/ data receive
- $\lambda=1550 \mathrm{~nm}$ video receive

Each ONT is capable of delivering:
Multiple POTS (plain old telephone service) lines, Internet data, Video

Fiber to the Home

Image by uuzinger
http:/ / www. flickr.com/ photos/ uuzinger/ 411425461/ on flickr

Image by uuzinger
http:/ / www. flickr.com/ photos/ uuzinger/ 411425452/ on flickr

Bandwidths \& Services

Image of ONT by J osh Bancroft
http:/ / www. flickr. com/ photos/ i oshb/ 87167324/ on flickr

Optical Assembly

- Channels downstream to each home
$\rightarrow \lambda=1490$ and $\lambda=1550 \mathrm{~nm}$
- Channerlupstream from each home
- $\lambda=1310 \mathrm{~nm}$

Separating Wavelengths

Resonators

STANDING WAVE

RESONATORS

Terminate the standing wave with a second wall to form a resonator

Image by Yoko Nekonomania http:/ / www. flickr.com/ photos/ nekonomania/ 4827035737/ on flickr

Thin Film Interference

Optical Resonator

$$
\begin{aligned}
E_{t} & =\left[t_{12} t_{21} e^{-j \beta_{2} L}+t_{12} e^{-j \beta_{2} L} r_{21} e^{-j \beta_{2} L} r_{21} e^{-j \beta_{2} L} t_{21} \ldots\right] E_{i} \\
& =\left[t_{12} t_{21} e^{-j \beta L}\left(1+r_{12} r_{21} e^{-2 j \beta L}+\left(r_{12} r_{21} e^{-2 j \beta L}\right)^{2} \ldots\right)\right] E_{i} \\
& =\frac{t_{12} t_{21} e^{-j \beta_{2} L}}{1-r_{12} r_{21} e^{-2 j \beta L}} E_{i}
\end{aligned}
$$

Fabry-Perot Resonance

$$
t=\frac{t_{12} t_{21} e^{-j k L}}{1-r_{12} r_{21} e^{-2 j k L}}
$$

Fabry-Perot Resonance: $\max \left\{e^{-2 j k_{2} L}\right\}=1$ maximum transmission $\min \left\{e^{-2 j k_{2} L}\right\}=-1 \quad$ minimum transmission

Total Internal Reflection

Beyond the critical angle, θ_{c}, a ray within the higher index medium cannot escape at shallower angles

$$
n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1} \quad \theta_{c}=\sin ^{-1}\left(n_{1} / n_{2}\right)
$$

For glass, the critical internal angle is 42°
For water, it is 49°

Image is in the public domain

Wavequide Transport Light Between Mirrors

Metal waveguides

So what kind of waveguide are the optical fibers?

Dielectric waveguides

Image by Dan Tentler http:/ / www. flickr.com/ photos/ vissago/ 4634464205/ on flickr

Fabry-Perot Modes

Constructive Interference
Standing Wave E-field

$$
\begin{aligned}
& r_{21}=\frac{n_{2}-n_{1}}{n_{2}+n_{1}} \\
& E_{r}=r E_{i} \\
& \lambda_{o 2}=\frac{2 n_{2} L}{m+1}
\end{aligned}
$$

$$
\Rightarrow \Delta \lambda_{o}=2 n_{2} L\left(\frac{1}{m}-\frac{1}{m+1}\right)=\frac{2 n_{2} L}{m(m+1)}
$$

$$
\begin{gathered}
\lambda_{o}=1 \mu m, n_{2}=3.5, L=300 \mu m \\
\lambda_{1}=1 \mu m \Rightarrow m=2100 \\
\Delta \lambda=5 \AA
\end{gathered}
$$

Plane Waves in Lossy Materials

$$
\begin{gathered}
E_{y}=\operatorname{Re}\left\{A_{1} e^{j(\omega t \tilde{k} z)}\right\}+\operatorname{Re}\left\{A_{2} e^{j(\omega t \tilde{k} z)}\right\} \\
E_{y}(z, t)=A_{1} e^{-\alpha / 2 z} \cos (\omega t-k z)+A_{2} e^{+\alpha / 2 z} \cos (\omega t+k z)
\end{gathered}
$$

Resonators with Internal Loss

Image is in the public domain

$$
\begin{aligned}
& \tilde{r}=\frac{\tilde{n}_{1}-\tilde{n}_{2}}{\tilde{n}_{1}+\tilde{n}_{2}} \\
& \tilde{t}=\frac{2 \tilde{n}_{1}}{\tilde{n}_{1}+\tilde{n}_{2}}
\end{aligned}
$$

$$
\frac{E_{t}}{E_{i}}=\frac{\tilde{t}_{1} \tilde{t}_{2} e^{-j \tilde{k} L}}{1-\tilde{r}_{1} \tilde{r}_{2} e^{-2 j \tilde{k} L}}=\frac{\tilde{t}_{1} \tilde{t}_{2} e^{-j k_{r} L} e^{-\alpha L}}{1-\tilde{r}_{1} \tilde{r}_{2} e^{-2 j k_{r} L} e^{-2 \alpha L}}
$$

...the EM wave loss is what heats the water inside the food

Laser Using Fabre-Perot Cavity

Resonant modes

Image is in the public domain

Resonators with Internal Gain

What if it was possible to make a material with "negative absorption" so the field grew in magnitude as it passed through a material?

$$
\frac{E_{t}}{E_{i}}=\frac{\tilde{t}_{1} \tilde{t}_{2} e^{-j \tilde{k} L}}{1-\tilde{r}_{1} \tilde{r}_{2} e^{-2 j \tilde{k} L}}=\frac{\tilde{t}_{1} \tilde{t}_{2} e^{-j k_{r} L} e^{-\alpha L}}{1-\tilde{r}_{1} \tilde{r}_{2} e^{-2 j k_{r} L} e^{-2 \alpha L}}
$$

Resonance:
$e^{2 j k L}=1$

Lasers: Something for Nothing (almost)

at resonance $e^{2 j k L}=1$

$$
\frac{E_{t}}{E_{i}}=\frac{\tilde{t}_{1} \tilde{t}_{2} e^{-j \tilde{k} L}}{1-\tilde{r}_{1} \tilde{r}_{2} e^{-2 j \tilde{k} L}}=\frac{\tilde{t}_{1} \tilde{t}_{2} e^{-j k_{r} L} e^{-\alpha L}}{1-\tilde{r}_{1} \tilde{r}_{2} e^{-2 j k_{r} L} e^{-2 \alpha L}}
$$

singularity at

$$
1=r_{1} r_{2} e^{\Gamma g L} e^{-\alpha_{i} L} \Leftrightarrow 1=R_{1} R_{2} e^{2 \Gamma g L} e^{-2 \alpha_{i} L}
$$

$$
\frac{E_{t}}{E_{i}} \rightarrow \infty
$$

MIT OpenCourseWare
|http://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to Lasers

Spring 2011

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

