
Problem Set #2

Successive Approximation and a Wordgame!
Handed out: Lecture 4
Due date: 11:59pm, Lecture 6

Introduction
Successive approximation is a problem-solving method where you try to guess the right answer
to a problem and then check your guess. If the guess is good enough, you’re done. Otherwise,
you keep improving your guess in small increments and checking it, getting closer and closer to
the right answer, until you determine that the guess is good enough. For the first 3 problems of
this problem set, we will look at Newton’s method, which uses successive approximation to find
the roots of a function.

Secondly, we will have some fun with Python, and get some practice using strings and string
operations. We would like you to implement the word game hangman as a 1-player game against
the computer.

Getting Started

Download and save

1. Problem Set 2: A zip file of all the skeleton code you’ll be filling in.

Polynomials
For this problem set, we will be representing polynomials as tuples. The index of a number in the
tuple represents the power, and the value at that index represents the coefficient for that term. So
for example, the polynomial x4 + 3x3 + 17.5x2 – 13.39 would be represented by the tuple (-13.39,
0.0, 17.5, 3.0, 1.0). This is because the tuple represents -13.39x0 + 0.0x1 + 17.5x2 + 3.0x3 + 1.0x4,
which is the same as x4 + 3.0x3 + 17.5x2 – 13.39.

Problem #1

Implement the evaluate_poly function. This function evaluates a polynomial function for the
given x value. It takes in a tuple of numbers poly and a number x. By number, we mean
that x and each element of poly is a float. evaluate_poly takes the polynomial represented
by poly and computes its value at x. It returns this value as a float.

def evaluate_poly(poly, x):

"""
Computes the polynomial function for a given value x. Returns that value.
Example:
>>> poly = (0.0, 0.0, 5.0, 9.3, 7.0) # f(x) = 7.0x4 + 9.3x3 + 5.0x2

>>> x = -13
>>> print evaluate_poly(poly, x) # f(-13) = 7.0(-13)4 + 9.3(-13)3 + 5.0(-13)2

180339.9
poly: tuple of numbers, length > 0
x: number
returns: float
"""
TO DO ...

Derivatives
As stated before, we will need to find f'(xn), where f'(x) is the derivative of f(x). Recall that
the derivative of a polynomial f(x) = axb is f'(x) = abxb - 1, unless b=0, in which case f'(x)
= 0. To compute the derivative of a polynomial function with many terms, you just do the same
thing to every term individually. For example, if f(x) = x4 + 3x3 + 17.5x2 - 13.39, then
f'(x) = 4x3 + 9x2 + 35x.

Problem #2

Implement the compute_deriv function. This function computes the derivative of a polynomial
function. It takes in a tuple of numbers poly and returns the derivative, which is also a
polynomial represented by a tuple.

def compute_deriv(poly):

"""

Computes and returns the derivative of a polynomial function. If the

derivative is 0, returns (0.0,).

Example:

>>> poly = (-13.39, 0.0, 17.5, 3.0, 1.0) # x4 + 3.0x3 + 17.5x2 - 13.39

>>> print compute_deriv(poly) # 4.0x3 + 9.0x2 + 35.0x

(0.0, 35.0, 9.0, 4.0)

poly: tuple of numbers, length > 0

returns: tuple of numbers

"""

TO DO ...

Newton’s Method
Newton’s method (also known as the Newton-Raphson method) is a successive approximation
method for finding the roots of a function. Recall that the roots of a function f(x) are the values
of x such that f(x) = 0. You can read more about Newton’s method here.

Here is how Newton’s method works:

http://en.wikipedia.org/wiki/Newton%27s_method

1.	 We guess some x0.
2.	 We check to see if it’s a root or close enough to a root by calculating f(x0). If f(x0) is

within some small value epsilon of 0, we say that’s good enough and call x0 a root.
3.	 If f(x0) is not good enough, we need to come up with a better guess, x1. x1 is calculated

by the equation: x1 = x0 - f(x0)/f'(x0).
4.	 We check to see if x1 is close enough to a root. If it is not, we make a better guess x2 and

check that. And so on and so on. For every xn that is not close enough to a root, we
replace it with xn+1 = xn - f(xn)/f'(xn) and check if that’s close enough to a root. We
repeat until we finally find a value close to a root.

For simplicity, we will only be using polynomial functions in this problem set.

Implementing Newton’s Method

Problem #3

Implement the compute_root function. This function applies Newton’s method of successive
approximation as described above to find a root of the polynomial function. It takes in a tuple of
numbers poly, an initial guess x_0, and an error bound epsilon. It returns a tuple. The first
element is the root of the polynomial represented by poly; the second element is the number of
iterations it took to get to that root.

The function starts at x_0. It then applies Newton’s method. It ends when it finds a root x such
that the absolute value of f(x) is less than epsilon, i.e. f(x) is close enough to zero. It returns the
root it found as a float.

def compute_root(poly, x_0, epsilon):

"""

Uses Newton's method to find and return a root of a polynomial function.

Returns a tuple containing the root and the number of iterations required to

get to the root.

Example:

>>> poly = (-13.39, 0.0, 17.5, 3.0, 1.0) #x4 + 3.0x3 + 17.5x2 - 13.39

>>> x_0 = 0.1

>>> epsilon = .0001

>>> print compute_root(poly, x_0, epsilon)

(0.80679075379635201, 8)

poly: tuple of numbers, length > 1.

Represents a polynomial function containing at least one real root.

The derivative of this polynomial function at x_0 is not 0.

x_0: float

epsilon: float > 0

returns: tuple (float, int)

"""

TO DO ...

A Wordgame: Hangman

For this problem, you will implement a variation of the classic wordgame Hangman. For those of
you who are unfamiliar with the rules, you may read all about it here. In this problem, the second
player will always be the computer, who will be picking a word at random.

Problem #4

Implement a function, hangman(), that will start up and carry out an interactive Hangman game
between a player and the computer.

For this problem, you will need the code files ps2_hangman.py and words.txt, which were
included in the zip file from the top of this homework. Make sure your file runs properly before
editing. You should get the following output when running the unmodified version
of ps2_hangman.py.

Loading word list from file...
55900 words loaded.

You will want to do all of your coding for this problem within this file as well because you will
be writing a program that depends on each function you write.

Requirements

Here are the requirements for your game:

1.	 The computer must select a word at random from the list of available words that was
provided in words.txt. The functions for loading the word list and selecting a random
word have already been provided for you in ps2_hangman.py.

2.	 The game must be interactive: it should let a player know how many letters the word the
computer has picked contains and ask the user to supply guesses. The user should receive
feedback immediately after each guess. You should also display to the user the partially
guessed word so far, as well as either the letters that the player has already guessed or
letters that the player has yet to guess.

3.	 A player is allowed some number of guesses. Once you understand how the game works,
pick a number that seems reasonable to you. Make sure to remind the player of how
many guesses s/he has left after each turn.

4.	 A player loses a guess only when s/he guesses incorrectly.
5.	 The game should end when the player constructs the full word or runs out of guesses. If

the player runs out of guesses (s/he “loses”), reveal the word to the player when the game
ends.

The output of an example game may look like this:

>>>

Welcome to the game, Hangman!

I am thinking of a word that is 4 letters long.

You have 8 guesses left.

Available letters: abcdefghijklmnopqrstuvwxyz

http://en.wikipedia.org/wiki/Hangman%20%28game%29

Please guess a letter: a
Good guess: _a _ _

You have 8 guesses left.

Available letters: bcdefghijklmnopqrstuvwxyz

Please guess a letter: s

Oops! That letter is not in my word: _a _ _

You have 7 guesses left.
Available letters: bcdefghijklmnopqrtuvwxyz
Please guess a letter: t
Good guess: ta _t

You have 7 guesses left.
Available letters: bcdefghijklmnopqruvwxyz
Please guess a letter: r
Oops! That letter is not in my word: ta _t

You have 6 guesses left.
Available letters: bcdefghijklmnopquvwxyz
Please guess a letter: m
Oops! That letter is not in my word: ta _t

You have 5 guesses left.
Available letters: bdefghijklmnopquvwxyz
Please guess a letter: c
Good guess: tact

Congratulations, you won!

Do not be intimidated by this problem! It’s actually easier than it looks. Make sure you break
down the problem into logical subtasks. What functions will you need to have in order for this
game to work?

Hints:

x You should start by using the provided functions to load the words and pick a random
one.

x Consider using string.lowercase.
x Consider writing helper functions. For instance, we found that creating functions to fill in

guessed letters (generating strings like “ta_t”) and to display unused letters made
partitioning the problem easier.

This completes the problem set!

Handin Procedure
1. Save
Save your solutions as they were provided: ps2_newton.py and ps2_hangman.py.
Do not ignore this step or save your file(s) with a different name!
2. Time and collaboration info

At the start of the file, in a comment, write down the number of hours (roughly) you spent on this
problem set, and the names of whomever you collaborated with. For example:

Problem Set 2
Name: Jane Lee
Collaborators (Discussion): John Doe
Collaborators (Identical Solution): Jane Smith
Time: 1:30

.... your code goes here ...

3. Submit

Anything uploaded after the deadline time will be counted towards your late days, if you have
any remaining. If you have no remaining late days, you will receive no credit for a late
submission.

�

MIT OpenCourseWare
http://ocw.mit.edu

6.00SC Introduction to Computer Science and Programming
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

