6.00 Notes On Big-O Notation

Sarina Canelake

See also http://en.wikipedia.org/wiki/Big_0_notation

- We use big-O notation in the analysis of algorithms to describe an algorithm's usage of computational resources, in a way that is independent of computer architecture or clock rate.
- The worst case running time, or memory usage, of an algorithm is often expressed as a function of the length of its input using big O notation.
- In 6.00 we generally seek to analyze the worst-case running time. However it is not unusual to see a big-O analysis of memory usage.
- An expression in big-O notation is expressed as a capital letter "O", followed by a function (generally) in terms of the variable n, which is understood to be the size of the input to the function you are analyzing.
- This looks like: $O(n)$.
- If we see a statement such as: $f(x)$ is $O(n)$ it can be read as " f of x is big Oh of n "; it is understood, then, that the number of steps to run $f(x)$ is linear with respect to $|x|$, the size of the input x.
- A description of a function in terms of big O notation only provides an upper bound on the growth rate of the function.
- This means that a function that is $O(n)$ is also, technically, $O\left(n^{2}\right), O\left(n^{3}\right)$, etc
- However, we generally seek to provide the tightest possible bound. If you say an algorithm is $O\left(n^{3}\right)$, but it is also $O\left(n^{2}\right)$, it is generally best to say $O\left(n^{2}\right)$.
- Why do we use big-O notation? big-O notation allows us to compare different approaches for solving problems, and predict how long it might take to run an algorithm on a very large input.
With big-O notation we are particularly concerned with the scalability of our functions. big-O bounds may not reveal the fastest algorithm for small inputs (for example, remember that for $x<0.5, x^{3}<x^{2}$) but will accurately predict the long-term behavior of the algorithm.
- This is particularly important in the realm of scientific computing: for example, doing analysis on the human genome or data from Hubble involves input (arrays or lists) of size well into the tens of millions (of base pairs, pixels, etc).
- At this scale it becomes easy to see why big O notation is helpful. Say you're running a program to analyze base pairs and have two different implementations: one is $\mathrm{O}(n \lg n)$ and the other is $\mathrm{O}\left(\mathrm{n}^{3}\right)$. Even without knowing how fast of a computer you're using, it's easy to see that the first algorithm will be $n^{3} /(n \lg n)=n^{2} / \lg n$ faster than the second, which is a BIG difference at input that size.
big-O notation is widespread wherever we talk about algorithms. If you take any Course 6 classes in the future, or do anything involving algorithms in the future, you will run into big-O notation again.
- Some common bounds you may see, in order from smallest to largest:
- $\mathrm{O}(1)$: Constant time. $\mathrm{O}(1)=\mathrm{O}(10)=\mathrm{O}\left(2^{100}\right)$ - why? Even though the constants are huge, they are still constant. Thus if you have an algorithm that takes 2^{100} discreet steps, regardless of the size of the input, the algorithm is still $\mathrm{O}(1)$ - it runs in constant time; it is not dependent upon the size of the input.
$-\mathrm{O}(\lg \mathfrak{n})$: Logarithmic time. This is faster than linear time; $O\left(\log _{10} \mathfrak{n}\right)=O(\ln \mathfrak{n})=$ $\mathrm{O}(\lg \mathfrak{n})$ (traditionally in Computer Science we are most concerned with $\lg \mathfrak{n}$, which is the base- 2 logarithm - why is this the case?). The fastest time bound for search.
- $O(n)$: Linear time. Usually something when you need to examine every single bit of your input.
- $O(n \lg n)$: This is the fastest time bound we can currently achieve for sorting a list of elements.
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$: Quadratic time. Often this is the bound when we have nested loops.
$-\mathrm{O}\left(2^{\mathfrak{n}}\right)$: Really, REALLY big! A number raised to the power of \mathfrak{n} is slower than n raised to any power.
- Some questions for you:

1. Does $\mathrm{O}\left(100 n^{2}\right)=O\left(n^{2}\right)$?
2. Does $\mathrm{O}\left(\frac{1}{4} n^{3}\right)=\mathrm{O}\left(n^{3}\right)$?
3. Does $O(n)+O(n)=O(n)$?

The answers to all of these are Yes! Why? big-O notation is concerned with the longterm, or limiting, behavior of functions. If you're familiar with limits, this will make sense - recall that

$$
\lim _{x \rightarrow \infty} x^{2}=\lim _{x \rightarrow \infty} 100 x^{2}=\infty
$$

basically, go out far enough and we can't see a distinction between $100 x^{2}$ and x^{2}. So, when we talk about big-O notation, we always drop coefficient multipliers - because they don't make a difference. Thus, if you're analysing your function and you get that it is $O(n)+O(n)$, that doesn't equal $O(2 n)$ - we simply say it is $O(n)$.

One more question for you: Does $\mathrm{O}\left(100 n^{2}+\frac{1}{4} n^{3}\right)=O\left(n^{3}\right)$?
Again, the answer to this is Yes! Because we are only concerned with how our algorithm behaves for very large values of n, when n is big enough, the n^{3} term will always dominate the n^{2} term, regardless of the coefficient on either of them.

In general, you will always say a function is big-O of its largest factor - for example, if something is $\mathrm{O}\left(\mathrm{n}^{2}+\mathrm{n} \lg \mathrm{n}+100\right)$ we say it is $\mathrm{O}\left(\mathrm{n}^{2}\right)$. Constant terms, no matter how huge, are always dropped if a variable term is present - so $\mathrm{O}(800 \lg \mathfrak{n}+73891)=$ $\mathrm{O}(\lg \mathfrak{n})$, while $\mathrm{O}(73891)$ by itself, with no variable terms present, is $\mathrm{O}(1)$.
See the graphs generated by the file big0_plots.py for a more visual explanation of the limiting behavior we're talking about here. Figures 1, 2, and 3 illustrate why we drop coefficients, while figure 4 illustrates how the biggest term will dominate smaller ones.

Now you should understand the What and the Why of big-O notation, as well as How we describe something in big-O terms. But How do we get the bounds in the first place?? Let's go through some examples.

1. We consider all mathematical operations to be constant time $(O(1))$ operations. So the following functions are all considered to be $\mathrm{O}(1)$ in complexity:
```
def inc(x):
    return x+1
def mul(x, y):
    return x*y
def foo(x):
    y = x*77.3
    return x/8.2
def bar(x, y):
    z = x + y
    w = x * y
    q=(w**z) % 870
    return 9*q
```

2. Functions containing for loops that go through the whole input are generally $O(n)$. For example, above we defined a function mul that was constant-time as it used the built-in Python operator *. If we define our own multiplication function that doesn't use $*$, it will not be $\mathrm{O}(1)$ anymore:
```
def mul2(x, y):
    result = 0
    for i in range(y):
        result += x
    return result
```

Here, this function is $\mathrm{O}(\mathrm{y})$ - the way we've defined it is dependent on the size of the input y, because we execute the for loop y times, and each time through the for loop we execute a constant-time operation.
3. Consider the following code:

```
def factorial(n):
    result = 1
    for num in range(1, n+1):
            result *= num
    return num
```

What is the big-O bound on factorial?
4. Consider the following code:

```
def factorial2(n):
    result = 1
    count = 0
    for num in range(1, n+1):
        result *= num
        count += 1
    return num
```

What is the big-O bound on factorial2?
5. The complexity of conditionals depends on what the condition is. The complexity of the condition can be constant, linear, or even worse - it all depends on what the condition is.

```
def count_ts(a_str):
    count = 0
    for char in a_str:
        if char == 't':
            count += 1
    return count
```

In this example, we used an if statement. The analysis of the runtime of a conditional is highly dependent upon what the conditional's condition actually is; checking if one character is equal to another is a constant-time operation, so this example is linear with respect to the size of a_str. So, if we let $n=\mid$ a_str \mid, this function is $O(n)$.
Now consider this code:

```
def count_same_ltrs(a_str, b_str):
    count = 0
    for char in a_str:
        if char in b_str:
            count += 1
    return count
```

This code looks very similar to the function count_ts, but it is actually very different! The conditional checks if char in b_str - this check requires us, in the worst case, to check every single character in b_str! Why do we care about the worst case? Because big-O notation is an upper bound on the worst-case running time. Sometimes analysis becomes easier if you ask yourself, what input could I give this to achieve the maximum number of steps? For the conditional, the worst-case occurs when char is not in b_str - then we have to look at every letter in b_str before we can return False.

So, what is the complexity of this function? Let $n=\mid \mathrm{a} _$str \midand $m=\mid \mathrm{b} _$str|. Then, the for loop is $\mathrm{O}(\mathrm{n})$. Each iteration of the for loop executes a conditional check that is, in the worst case, $O(m)$. Since we execute an $O(m)$ check $O(n)$ time, we say this function is $\mathrm{O}(\mathrm{nm})$.
6. While loops: With while loops you have to combine the analysis of a conditional with one of a for loop.

```
def factorial3(n):
    result = 1
    while n > 0:
        result *= n
        n -= 1
    return result
```

What is the complexity of factorial3?

```
def char_split(a_str):
    result = []
    index = 0
    while len(a_str) != len(result):
        result.append(a_str[index])
        index += 1
    return result
```

In Python, len is a constant-time operation. So is string indexing (this is because strings are immutable) and list appending. So, what is the time complexity of char_split?

If you are curious, there is a little more information on Python operator complexity here:
http://wiki.python.org/moin/TimeComplexity - some notes: (1) CPython just means "Python written in the C language". You are actually using CPython. (2) If you are asked to find the worst-case complexity, you want to use the Worst Case bounds. (3) Note that operations such as slicing and copying aren't $\mathrm{O}(1)$ operations.
7. Nested for loops - anytime you're dealing with nested loops, work from the inside out. Figure out the complexity of the innermost loop, then go out a level and multiply (this is similar to the second piece of code in Example 5). So, what is the time complexity of this code fragment, if we let $n=|z|$?

```
result = 0
for i in range(z):
    for j in range(z):
        result += (i*j)
```

8. Recursion. Recursion can be tricky to figure out; think of recursion like a tree. If the tree has lots of branches, it will be more complex than one that has very few branches. Consider recursive factorial:
```
def r_factorial(n):
    if n <= 0:
        return 1
    else:
        return n*r_factorial(n-1)
```

What is the time complexity of this? The time complexity of r_factorial will be dependent upon the number of times it is called. If we look at the recursive call, we notice that it is: r_{-}factorial ($n-1$). This means that, every time we call r_factorial, we make a recursive call to a subproblem of size $n-1$. So given an input of size n, we make the recursive call to subproblem of size $n-1$, which makes a call to subproblem of size $n-2$, which makes a call to subproblem of size $n-3, \ldots$ see a pattern? We'll have to do this until we make a call to $n-n=0$ before we hit the base case - or, n calls. So, r_factorial is $O(n)$. There is a direct correlation from this recursive call to the iterative loop for i in range ($n, 0,-1$).
In general, we can say that any recursive function $g(x)$ whose recursive call is on a subproblem of size $x-1$ will have a linear time bound, assuming that the rest of the recursive call is $\mathrm{O}(1)$ in complexity (this was the case here, because the $\mathrm{n} *$ factor was $\mathrm{O}(1))$.
How about this function?

```
def foo(n):
    if n<= 1:
        return 1
    return foo(n/2) + 1
```

In this problem, the recursive call is to a subproblem of size $n / 2$. How can we visualize this? First we make a call to a problem of size n, which calls a subproblem of size $n / 2$, which calls a subproblem of size $n / 4$, which calls a subproblem of size $n /\left(2^{3}\right), \ldots$ See the pattern yet? We can make the intuition that we'll need to make recursive calls until $n=1$, which will happen when $n / 2^{x}=1$.
So, to figure out how many steps this takes, simply solve for x in terms of n :

$$
\begin{aligned}
\frac{n}{2^{x}} & =1 \\
n & =2^{x} \\
\log _{2} n & =\log _{2}\left(2^{x}\right) \\
\therefore x=\log _{2} n &
\end{aligned}
$$

So, it'll take $\log _{2} n$ steps to solve this recursive equation. In general, we can say that if a recursive function $g(x)$ makes a recursive call to a subproblem of size x / b, the complexity of the function will be $\log _{b} n$. Again, this is assuming that the remainder of the recursive function has complexity of $\mathrm{O}(1)$.

Finally, how do we deal with the complexity of something like Fibonacci? The recursive call to Fibonacci is $\operatorname{fib}(n)=f i b(n-1)+\operatorname{fib}(n-2)$. This may initially seem linear, but it's not. If you draw this in a tree fashion, you get something like:

The depth of this tree (the number of levels it has) is n, and at each level we see a branching factor of two (every call to fib generates two more calls to fib). Thus, a loose bound on fib is $\mathrm{O}\left(2^{n}\right)$. In fact, there exists a tighter bound on Fibonacci involving the Golden Ratio; Google for "Fibonacci complexity" to find out more if you're interested in maths: D

MIT OpenCourseWare
http://ocw.mit.edu

6.00SC Introduction to Computer Science and Programming

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

