
MITOCW | Lecture 26

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: Now today's lecture. First I want to talk a little bit about what computer scientists do.

This whole course has been about computer science. And I hope that at least for

many of you, it might have persuaded you that there's an interesting career out

there for you as a computer scientist. And then I'll finish up with an overview of what

I think we covered this term.

So what do computer scientists do? Well, they look a lot like that as you all know. In

fact, it's amazing. There's almost nothing that computer scientists don't do. So here

I've just collected a few of the different pictures related to what computer scientists

in EECS are doing these days, things like working on the software that keeps

airplanes from falling out of the skies. Quite a few people working in the movie

industry these days doing animations in 3D and that sort of thing. These days,

computer scientists don't get paid as much as the actors. But they get paid a lot to

produce movies.

Robots, of course. A lot of medical work, particularly medical imaging. This is a

picture where someone has written software to try and identify the tumors in the

human brain, and then will draw little lines telling the surgeon where to cut so as to

do the least damage and the most good. A lot of work in genetics. And of course,

core things like making the internet actually not crash.

Fundamentally, what computer scientists do is they think computationally. And I

hope that you've understood that that's been the theme of 6.00, is how to formulate

problems and think computationally. This will be, I think, the most important skill

used by certainly scientists and engineers but, in fact, everybody by the middle of

the 21st century or sooner. People will just do everything computationally. And just

1



as once upon a time maybe it's still important everyone learn to read and write and

do a little arithmetic, people will think that computation is exactly as important and

that you'll have to know how to formulate problems computationally to survive in

society.

The process, and this is what we've been doing all term, is not an easy one. But it's

not an impossible one either. We begin by identifying and inventing useful

abstractions. Everything we do is an abstraction of reality. And as we've gone

through the second half of the term, almost every interesting computation we've

designed starts with inventing classes that give us useful data abstraction or

functions that compute useful things. And that's sort of what we start with. We start

with some existing set of abstractions, and we invent new ones that will help us think

about the current problem.

We then formulate the solution to the problem as a computational experiment and

then design and construct a sufficiently efficient implementation. It doesn't have to

be the most efficient one possible. It just has to be efficient enough that we can run

it and get an answer. Of course, before we trust the answer, as with any

experimental apparatus-- and it is an experimental apparatus, a program-- we need

to validate the experiment, convince ourselves that when we run it, we should

believe the answer. That's the process of debugging. And I'm sure it's a process

that all of you have spent more time on this term then you might have liked. I hope

by now you feel you are a little bit better at it than you used to be.

Once we think we've got the experiment put together properly, we run it. We then

evaluate the results. And then we repeat as needed, the classic iterative style of

science. And a lot of this, of course, is what you would have learned in your

chemistry lab or your physics lab or the bio lab in designing any experiment. You

have to go through a lot of these steps. And the difference is these are all

computational experiments.

So we think of there are two ways of computational thinking. There's abstraction.

You have to choose the right abstraction. Typically, we operate in terms of multiple

2



layers of abstraction simultaneously. And this is an important part of thinking

computationally. We have to be able to not worry about, say, the details of how

floating point numbers were implemented, but just assume it's a good

approximation of the real numbers. That's one level of abstraction. And another

level of abstraction, we think about bus stop queues. And maybe we have to

implement those ourselves.

And then we have to think about the relationships among the layers. A key thing that

makes computational abstractions different from so many others is we can

automate them. So we often think about abstractions as we go through life and think

about how to cope with things that are too complex to understand. We have these

various abstractions. Newton gave us some good abstractions of the physical world

that let us understand how things like levers and such almost how they work.

But here we get the big advantage that we not only can invent an abstraction, we

can mechanize it. We can do this for two reasons. One, we have a precise and

exacting notation for expressing the abstractions for building our computational

models. This term, that has been Python and PyLab and NumPy. But it could have

been Java. It could have been C++. It could have been MATLAB. Doesn't matter

very much. What matters is that we have a notation that's precise enough that we

can actually describe a computation. And we have some machine that can take a

computation written in that notation, or a set of computations actually written in that

notation, and execute them and give us results.

And that's been the big transformation that has made computation so important.

We've had the notion of computation long before we had machines that could

execute them. The Greeks, the Egyptians understood notions of computation, as

we've seen before when we looked at some early algorithms. Algorithms have been

around a long time. But nobody cared very much until we had machines and

notations that would let us actually run the algorithms. That came along in the late

'40s. And then the world changed dramatically.

So some examples of computational thinking. How difficult is this problem, and how

3



best can I solve it? And that's what theoretical computer scientists spend their time

thinking about. They try to give precise meanings to these kinds of questions so that

we can ask them in the context of, say, random access machines or parallel

machines or, more lately, quantum machines, how do we formulate those questions

precisely? And how can we answer them?

And of course, thinking recursively is very important. Fundamentally, it's the key in

that what we try and do is we try and reformulate a seemingly difficult problem into

one we already know how to solve. This is what we talked about before, reduction to

a previously solved problem. And we've looked at different ways of doing this. There

is reduction, as I mentioned. There's embedding, where, OK, our problem is

complex. We can't reduce it to a different problem. But we can embed a different

problem in it as at least part of the solution.

We can do some transformations, take one problem and transform it to a different

problem. Usually, a simpler problem that we know how to solve. We've seen a lot of

that. That's, of course, what you've seen in the bus simulation you're studying, I

hope as-- I hope not as I speak, but as soon as I finish speaking, you'll be studying

it. We've taken a complex problem and simplified it by transforming it into a simpler

problem that we can then attack.

And we've used a lot of simulation as a mechanism for dealing with problems. So

here's a little recursive picture. Here's one of my favorite illustrations of recursion. I

don't know how they did that, but I think it's pretty cool.

All right. That's a very quick introduction, at a very abstract level, what computer

scientists might do. I'm gonna spend some time now on what one particular

computer scientist does, and that's me. Why did I choose me? Well, not because

I'm the most interesting, but because I'm the one I know the best. So it's kind of

easier for me to talk about my work than about somebody else's.

And the truth be told, it's not actually my work. Like all professors, I claim credit for

the work that my students do. So all of the work you're going to see is actually work

that my students have done. Mostly graduate students, but also some very

4



productive UROPs. So, I won't give them as much credit as I should, but you should

know in your heart that I didn't do any of this actually myself.

All right. What do we do? The goals of our research group is the rather modest one

of helping people live longer and better quality lives. Other than that, we don't intend

to accomplish anything. And we do this mostly in the medical area by collaborating

with clinical researchers and practicing clinicians. Along the way we have a lot of fun

pushing the frontiers, the state of the art in computer science, electrical engineering,

and certainly medicine.

We use a lot of the technical kind of ideas you've seen this semester and that you'll

see in almost any computer science course you take. We do a lot of machine

learning and data mining. I'll explain why shortly. We do a lot of algorithm design

because a lot of the problems we're trying to solve are too complex to solve if you're

not clever about how you solve them. We do some signal processing. I'll explain

why we do that. And a lot of just plain-old software systems are needed. Do we use

databases? How we build software that injects electrical signals into people's

brains? So we spend a fair amount of time trying to convince ourselves it actually

works, doesn't inject the wrong signals at the wrong time. But that might be fun too.

And these are just the logos of some of the hospitals we work with.

So what are some of the problems we try and deal with? Probably our longest

standing project has to do with medical telepresence. These hands do not belong to

a basketball player. These are normal sized hands like yours or mine. That is not a

normal sized baby. This is not a Photoshop photo. This is a real photo. This is a

very small premature baby. And we have spent a lot of time working with groups

figuring out how to provide better outcomes for these tiny little, very delicate people.

A problem is that a lot of these babies are born-- if these babies are born in the right

hospital, Brigham and Women's Hospital or something close to Children's Hospital

or MGH, they have very good outcomes. They tend to survive, and they tend to

grow up to be relatively normal. If these babies are born in a community hospital

that does not know how to take care of these kinds of babies, they have very bad

5



outcomes. A lot of them die. Many of them who survive end up being permanently

disabled. Very sad.

One of the shocking statistics is that globally there's a neonatal death every 10

seconds. Shocking number, I think. It's just tragic. And many of these are

unnecessary. And they occur because there's not adequate care at the point where

the baby is born. And so we've been trying to use technology to link places where

these babies might be born to places where people can advise how to take care of

them.

And it turns out to be a very interesting set of computer networking communications

problems. You can't just use Skype for reasons I won't have time to go into. But it's

very exciting. It uses a lot of computer science, a lot of medicine, but mostly

computer science, in this case. And we're actually currently running some trials in

conjunction with Children's Hospital Boston where they're actually trying to look at

babies born elsewhere.

Another problem we've been looking at is health-care associated infections.

Approximately 1 in 20 hospital visits results in the patient contracting an infection

totally unrelated to the reason they entered the hospital. And today it's among the

top ten leading causes of death in the United States. Somebody enters a hospital

for a reason x, picks up an infection unrelated to x, and dies. Not a very good

outcome. And it's particularly discouraging because, in principle, these infections

should be preventable. You shouldn't acquire a life-threatening infection while

you're in the hospital. But people do.

We've been trying to understand why. We've been working on this project with

Microsoft, which has provided us with data from 4.5 million different hospital visits

and about 2000 pieces of information per visit, lab tests, drug tests, who the doctors

were, who the nurses were, what rooms they were in. And we're trying to study--

these are pictures of some of the most obnoxious of these infections-- and we've

been trying to figure out what's causing them and what can be done not to cause

them.

6



This has been primarily a machine learning project. We've been struggling with it.

We've been dealing with exactly some of the issues we talked about in class. Which

features are most important? How should you weight the different features? How

can we reduce the number of features so that we can actually finish our

computations? We've been using different kinds of clustering, different kinds of

supervised learning, many different techniques.

And we're beginning to get a handle here on, in fact, what are some of the causes

of these infections and what could they be done. Some of the things are very

disturbing. Some of them, a lot of them, seem to be caused by drugs that are given

in the hospital. And maybe we can substitute one drug for another if we understand

that. At least in some cases they seem to be related to things like what room you

happen to be placed in, suggesting that maybe they're not cleaning the rooms

adequately. Things like that.

All right. Another project, probably our biggest sets of projects, have to do with

extracting information from physiological signals. We've been focusing on the heart,

the brain, and the connected anatomy. For those of you who don't happen to be

biology or course 20 majors, here's where the heart and the brain are located and

what they look like.

Some of the examples we're interested in are predicting adverse cardiac events.

And for that you can think about death from a heart event, heart attack. And we

spent a lot of time dealing with epilepsy. So let me give a little bit more detail about

these two examples because each of them relate to things we've covered in 6.00.

So epilepsy, an interesting disease. Surprisingly, it affects about 1% of the world's

population. When I first heard this, I was astounded. Because gee, 1 out of 100

people that I know have epilepsy? And the truth is, yes. I just didn't know it. I've

been amazed, since it's become known that I do research in this area, the number

of people I've known for years who come up to me say, you know, I never

mentioned this before, but I have epilepsy, or my kid has epilepsy or my parent has

epilepsy, and I have some questions now that you're supposed to be an expert on

7



this. And I give them the usual caveats, you know, I'm not a doctor, I just play one

on television. But then I tell them go talk to one of my students. They're not doctors

either, but they're really smart. Probably smarter than your doctor. All right.

Why is it underestimated when we do it ourselves? Well, because they're still some

stigmas. A few hundred years ago, they burned women in Salem, Massachusetts,

who had epilepsy because they thought the seizures meant they were possessed

by the devil. Today, if you tell the Registry of Motor Vehicles that you have epilepsy,

they won't let you drive an automobile. So people tend not to announce it.

What's it characterized by is a recurrent seizure. A seizure is abnormal electrical

activity that originates and persists in the brain. Number of causes. It can be

acquired. It can be inherited. There's manifest different symptoms. Most of them do

not look like what's portrayed on the Simpsons.

Slightly more realistically, and maybe more horrifying. Here's a picture of a young

girl, a movie, you're gonna see a seizure. It's not pleasant, I'm gonna warn you.

What I want you to notice is two things. (1) She's all happy, and the seizure seems

to come out of nowhere. She doesn't expect it. She doesn't know she's going to

have. It just hits. That's very important.

(2) She happened to be in the clinic at the time wearing this funny looking cap, with

it has electrodes in it. Just sits on the scalp. And here is a record of the electrical

activity at the surface of her scalp. And what you'll see is a quick slight change on it

just before the seizure hits, and then enormous changes during the seizure. Turns

out that the enormous changes during the seizure have nothing really to do with the

seizure. They have to do with muscle activity. As you'll see once the seizure hits,

there's a lot of ugly muscle activity.

All right. Let's look at it. Uh oh. All right. Let's look at it-- I thought I had put the links

in here that should have done it, but who knows. I know where to find them.

[VIDEO PLAYBACK]

[SINGING IN FOREIGN LANGUAGE]

8



[SPEAKING FOREIGN LANGUAGE]

[END VIDEO PLAYBACK]

PROFESSOR: So kind of scary. Certainly when I've been seeing them actually happen, I've found it

terrifying to watch. That kind of-- it's called a tonic-clonic seizure. They seem- I

emphasize the word 'seem' -- unpredictable. The interesting thing about these

seizures, or an interesting thing, is they're self-limiting. In a few minutes, that young

lady or girl's seizure will be over, not because anybody intervened but because the

brain resets itself. Then it will take-- in this case, probably took her about an hour to

recover and get back to normal, which is not good. But after that, everything was as

before the seizure.

The difficulty is because they're unpredictable, there are huge injuries. Imagine

she'd been riding a bicycle when that hit. Well, something catastrophic. Or more

simply, imagine she'd been going down a flight of stairs or in a bathtub. Any one of

a number of things would have resulted in this potentially catastrophic collateral

damage after the seizure or during the seizure. And indeed people who have

epilepsy, you can see their scars. It's awful. It can result in death, about 1 per 100

patient years. It's called the sudden unexpected death in epilepsy patients.

So what we wanted to do is see whether we could detect the seizures and give a

little warning. The notion being that even if you couldn't do anything about the

seizure, if you could give somebody, say, even five seconds warning, they could sit

down before they fell down. They could get out of the tub. They could back away

from the stove. All sorts of things. Furthermore, if you could use technology to signal

to someone else that there was about to be a seizure, help could arrive. Also

potentially a good thing. Turns out there are now some fast-acting drugs that if you

put under the tongue can ameliorate the seizure. These have not yet been

approved by the FDA, but soon.

And we were particularly interested in neural stimulation. If we ejected electrical

current into the brain at exactly the right moment, could we offset essentially the

9



effect of the seizure and do a reset? And maybe stop the seizure or abort it, prevent

it, or at least reduce the long term recovery time.

The thing to keep in mind for the seizure is there were two distinct onset times.

What you saw if you're looking at the girl was what's called the clinical onset, when

there's some clinical event. If you were able to not look at the person and instead

look at the EEG, not so easy, you would have seen that there was an electrographic

onset that preceded the clinical onset. We know, in fact, since the clinical effects are

caused by the electrical activity, there will always be abnormal electrical activity prior

to any abnormal clinical activity. And so the hope was that we could detect the

electrical activity early.

Now that's not so easy. What makes it hard is that the EEG, the

electroencephalograph, differs greatly across patients. First of all, people with

epilepsy have abnormal baseline EEG. Even when they're not having a seizure,

bizarre things are going on in their brains electrically, all unusual things. And so they

don't look like people who don't have epilepsy. And it varies tremendously across

patients.

So for about 35 years, people attempted to build generic detectors that would detect

seizures in everybody. And they've not worked well at all. Every time a hospital buys

an EEG machine, it comes with a detector built in. And usually the first thing they do

is they turn them off because the false alarm rate is so high that it's like the boy who

cried wolf. They're just saying seizure, seizure, seizure, and people start ignoring it.

The good news is it's pretty consistent seizure onset for a particular individual. That

suggests you should build not generic detectors, but patient specific detectors. And

we've been working on using machine learning to do that. And in fact, it's been

highly successful. We've done several retrospective studies indicating that it works

really well. And we're now doing a substantial prospective study -- in progress at

MGH. And as part of that, we're actually working at turning on a neuro-stimulator

that we hope will attenuate the effect of the seizure. And I emphasize hope because

we don't have enough data to know if it works. It's part of what goes on in this

10



business. But it's certainly been an interesting project.

All right. Heart attacks. Let's look at that. And I'll go to the easy way to show them. I

should warn you, you're gonna see something that's not very pleasant. You're

actually gonna see somebody die. This was actually a person who was playing in a

soccer game and died while the game was being televised.

All right. What I want to show you is this didn't have to happen. We're now gonna

see another televised soccer game where the player had exactly the same event

but with a rather different outcome.

So look at the upper center of field and you'll see the person has collapsed, much

the same way it happened before. Now watch the body convulse. You'll see the

knees kick up there. And now comes the miracle. He sits up. He leaves the field

and, in fact, he later asked if he can reenter the game. The coach, to the coach's

everlasting credit, said no. Clearly the right decision.

So it's amazing really that this happens. So what was the difference between the

two? well, we see this here. There are things you can do. So in acute coronary

syndrome, think of it as some sort of a heart attack. They're very common, about

one and a quarter million per year in the US. 15% to 20% of these people will suffer

a cardiac-related death within the next four years. If you could figure out who were

the people at highest risk of different events and choose the treatment properly, for

example, implant an implantable cardiac defibrillator, you could save these lives.

And that was what we saw in our movies. That the first patient, first person, the one

who died, did not have a defibrillator. The second person, the one who survived,

did. So he collapsed on the field. The defibrillator sensed that his heart had

stopped, gave it an electric shock.

You've all seen this in television where they put the paddles on and they say, clear.

And then there's this moment of drama where everyone stares at the EKG machine,

and it goes from a flat line to suddenly up and down, and everyone goes, ah. Well

that's exactly what happened here. And that convulsion was this huge electrical

11



shock getting sent through the person's body which restarted the heart, saved his

life. Probably, if the other player had had an ICD, he would not have died either.

So great technology. Well, yes and no. This was a study in the New England Journal

of Medicine not so long ago, a very good control study, where they matched

patients with ICDs and patients without ICDs and over 72 months tracked which

ones lived and which ones died. Well, the disturbing news is there isn't much

difference between the red line and the blue line. So these people had what was

essentially a, well, which was about a $50,000 implant and various kinds of risks

and inconvenience and discomfort, et cetera, and on average it didn't save lives.

Oh, dear. In fact, 90% of the people who got them-- and this is not just in this study.

This is in every study- receives zero, actually less than zero medical benefit from

the ICD.

How do we know that? Well, remember, it only turns on when it senses the heart is

in trouble. For 90% of the people who get it, it never energizes because the heart

doesn't get in trouble, or detectable trouble. So what we see, if we look at a little

more detail in this study, is that for sudden cardiac death, the kind of death we saw

in those videos, or non-death, the ICD reduces that. Unfortunately, it increases

other causes of death, for example, infections related to the surgery, et cetera,

those unfortunate hospital acquired infections, for example, we talked about earlier.

So what we see here is we have a technology that if we knew whose heart was

likely to stop or go into serious fibrillation, beating uncontrollably, and we only gave

those people ICDs, we could save an enormous number of lives. But currently we

don't know who's in that population, and therefore we don't know who should get

them. So we use other mechanisms deciding who should get them. And we're

wrong most of the time, doing more harm than good on those patients for whom

we're wrong.

OK. Well, how do the people predict it today? The usual things. Are you male or

female? Do you have high blood pressure? Diabetes? What's your cholesterol

level? BMP? Various other kinds of things. Electrocardiograms, which look at-- it's

12



an echo cardiogram that looks at the activity of the heart. Is the blood flowing

through it OK? EKGs. Many different methods for analyzing the electrical activity, et

cetera.

We played with many of these techniques. The one I want to tell you about today,

because it's the most closely related to 6.00 material, is what we think of the Tolstoy

approach to risk stratification. So Tolstoy is famous for saying that happy families

are all alike, but every unhappy family is unhappy in its own way. So we generalize

that, or specialized it maybe, to say that happy hearts are all alike, but every

unhappy heart is different, and then did some fairly simple work to quantify the

difference between electrical activities in different people's hearts, converting it to

symbols. You don't have to worry about that. We used dynamic programming as an

important part because we were looking at roughly a billion heart beats and so we

needed to make it run fast. And then we used clustering to identify patients whose

hearts we thought were similar to one another.

Here are some results. These are people who had an acute coronary syndrome. So

the dominant group, the biggest group, the quote "people who we thought were

most likely to be fine"-- because remember, most people are fine after a heart

attack-- 457 patients in this particular data set. And you can see that they did pretty

well. A very small fraction of them died. Can't see it from this angle, but come out

here. Yeah, less than 1%.

But then we looked at people who were in these other clusters. And in fact, we used

a glomerate of hierarchical clustering to do this. And in cluster A, which had 53

patients, well, 3.77% died. If you happened to fall in cluster C, you were at very high

risk. And we can just see that there's a big difference here. And so the notion is

could we have used this to predict in advance who was most likely to benefit from

the various kinds of treatments?

All right. Again, very quick just to give you the details-- not the details, the overview

that the kinds of things that we cover in this course are actually quite useful in

solving real practical problems.

13



All right. Let me wrap up the term. So I hope most of you feel you've come a long

way-- maybe you prefer this picture. That if you think about the kinds of problems

and struggles you had three months ago in getting tiny little programs to work and

think about how easy those would be for you today, you should have some

appreciation that you've really taught yourself a lot. And you really taught it to

yourself, by doing the problem sets, in many ways, right. We've tried to help, but

learning is very much up to the individual who's doing the learning. But I'm certainly

impressed in looking at the kinds of really pretty complicated problems you guys can

now solve.

We looked at six major topics. Clearly, you learned a notation for expressing

computations, and that was Python. And I hope you don't think that's the only

notation you can use and that if you take a course that uses MATLAB, you'll say, oh,

this is just the same. It's easy. Or Java or anything else. Learning programming

languages is easy. Once you've learned one, the next one is much easier.

Harder was learning about the process of writing and debugging programs. You've

learned that, I think, largely through experience. You've learned about the process

of moving from a problem statement, something as vague as should shuttle buses

be bigger or faster to improve service, to a computational formulation of the

problem and a method for solving a problem. And we've looked at lots of different

methods.

You've learned basic recipes, algorithms, things like dynamic programming, things

like depth-first search, things like decision trees, that you'll be able to use again and

again. The good news is there are only a really small number of important recipes.

And once you've mastered those, you just use them over and over again to solve

new problems.

Spent a lot of time on using simulations to shed light on problems that don't easily

succumb to closed form solutions. And I think that's really the place where

computation is so important. There are a lot of problems where you can turn them

into a set of differential equations, maybe solve the equations, and you're done. Oh,

14



we'll write programs to do those because we're lazy. But in principle, you could

solve those without a computer.

But in fact, the thing you can't do without a computer is these messy problems that

are most of what goes on in the real world, where there's randomness, and things

like that, and there is no simple formula that gives you the answer. And what you

have to do is write a simulation and run it and see what goes on. And that's why we

spent so much time on simulation because it really is increasingly the thing people

use.

And we learned about how to use computational tools to help model and

understand data, how to do [?] plots, a small amount of statistics, machine learning,

just dealing with data.

Why Python? It's pretty easy to learn to use. Compared to most other programming

languages like, say, C++ or Java, Python is easy. The syntax is simple. It's

interpretive, which makes debugging easier. You don't have to worry about

managing memory as you do in, say, C, right. You get a big list or dictionary, and

magically it exists. And when you don't need it any more, it's gone. It's modern. It

supports the currently stylish mode of object-oriented programming in a nice way

with its classes and things like that. So indeed what you would hear about in a Java

class, we can cover almost all the interesting things with Python.

And it's increasingly popular. It's used in an increasing number of subjects at MIT. A

lot of course 6 subjects, but also a lot of course 20 subjects, course 9 subjects, over

and over again. It's becoming, probably, the most popular language at MIT and at

other universities. Increasingly it's used in industry. And as you've seen with PyLab,

the libraries are amazing. And so PyLab, Random, et cetera, there's just a lot of

stuff you can get for free if you're living in the world of Python.

The main thing in writing, testing, and bugging programs, I hope you've learned, is

to take it a step at a time. Understand the problem. Think about the overall structure

and algorithms separately of how you express them in the programming language,

right. We can talk about dynamic programming conceptually without worrying about

15



how to code it up.

Always break the problem into small parts. Identify useful abstractions. Code and

test each unit independently. Worry about functionality first. Get it to work. Get it to

give you the right answer. Then worry about making it do that more quickly. But

separate those things. Start with some pseudo code.

Then above all, be systematic. When debugging, think about the scientific method

of forming hypotheses, forming experiments that can test the hypotheses, running

the experiment, checking the results. Don't try and do it too quickly. Just be slow

and careful. Slow and steady will win the race in debugging.

And when your program behaves badly-- and the sad news is no matter how many

years you spend at it, you will write programs that don't work the way you think they

should the first time-- ask yourself why it did what it did, not why didn't it do what you

wanted to do. It's a lot easier to debug from the how come it's behaving the way it is

then why isn't it behaving the way I want it to behave.

In going from problem statement to computation, break the problem into smaller

problems. Try and relate your problem to a problem that somebody else, ideally,

has already solved. For example, is it a knapsack problem? Is it a shortest path

problem? If so, good, I know how to solve those.

Think about what kind of output you might want to see. What should the plots be

like? I usually design the output before I design the program. Often you can

formulate things as an optimization problem. Pull back. Say, well, can I formulate

this as finding the minimum or maximum values satisfying an objective function and

some set of constraints? If I can, it's an optimization problem, and therefore I know

how to attack it.

And don't be afraid to think about approximate solutions. Sometimes you're just

gonna not actually be able to solve the problem you want to solve. And so you'll find

a solution to a simpler problem, and that will be good enough. Sometimes you can

actually solve the problem by finding a series of solutions that approaches, but may

16



never reach, a perfect answer. Probably the third week in the course, we looked at

Newton's method as an example of that kind of problem.

And then there are algorithms. We looked at big O notation, various kinds of

algorithms, a lot of kinds. You've already - I sent a list of specific algorithms. And

particularly, we looked at optimization problems.

We spent a lot of time on modeling the world, keeping in mind that the models are

always wrong. But nevertheless, they're often useful. They provide abstractions of

reality. So we looked at two kinds of simulation models, Monte Carlo and queuing

networks. We looked at statistical models, for example, linear regression. And we

looked at some graph theoretic models. Those are not the only techniques, but

they're very useful techniques.

We looked at making sense of data. We talked about statistical techniques. How to

use them well. How to use them badly. We looked at plotting. And we spent some

time on machine learning, supervised and unsupervised and feature vectors, and

spent a lot of time talking about how do you choose the features, because

fundamentally that's typically the difference between success and failure in the

world of machine learning. Throughout it all, the pervasive themes were the power

of abstraction and systematic problem solving.

So what's next? Many of you have worked really hard this semester. We know that.

And the TAs and LAs and I all appreciate that. And I thank you sincerely for the

effort you put into the course. Only you know your return on the investment. I hope

it's good. Remember as you go forward in your careers that you can now write

programs to solve problems you need to solve. Don't be afraid to do it.

If you like this, there are plenty of other CS courses that you now could take. You're

actually equipped, probably, to take any one of these four courses based upon what

you've learned in 6.00. You could major in course 6 or think about the new major in

computer science and molecular biology. And you're certainly qualified to go off and

to look for UROPs that involve serious programming.

17



All right. Wrapping up with some famous last words, these were words that some

famous people said as they were about to die. An actor, Douglas Fairbanks senior,

was asked by a family member, how are you feeling? He said, never felt better. And

then that was the last thing he ever said. In contrast, the last thing Luther Burbank

was reported to have said, a famous scientist, was, I don't feel so good. He was a

scientist rather than actor. He had a better appreciation of the state of the world.

Conrad Hilton, who you probably think of as Paris Hilton's grandfather, but actually

is more well known in some circles for running the Hilton hotels, his last words when

his family asked him-- they knew he was dying-- is there anything you want us to

know about running the business? And he said, yes, leave the shower curtain on

the inside of the tub. And that's advice, I have to confess, my wife has given me on

several occasions.

Archimedes, basically before he was taken away and executed, asked, could he

please finish solving the problem he was working on. You know, I could imagine

some poor 6.00 student who's about to be carted away by the police saying, can I

finish my problem set first, please? Actually, I can't imagine that.

And finally, this US Civil War general, John Sedgwick, was reputedly-- and this is, I

believe, a true story-- said, talking about the snipers from the other side who were

quite far away, that telling his people, don't be afraid, they couldn't get an elephant

at this distance. And if you go to the site of the battle, you'll find this plaque

describing the death of John Sedgwick who was shot and killed immediately upon

saying this by one of said snipers. It says something about generals that probably is

still true today.

All right, quick reminders and then we're done. There's a final exam. If you haven't

done the underground guide, go do it. These are things I said at the beginning of

the lecture. I'm just repeating them.

Thanks a lot. Good luck in the final 6.00, all your finals. And then more importantly,

have a great summer.

18


