Homework \#4 - September 30, 2005

Due: October 7, 2005 at recitation (2 PM latest)
(late homework will not be accepted)

Please write your recitation session time on your problem set solution.

1. [30 points] In a paper on Si p-n junction varactors, you see the following graph with the capacitance-voltage characteristics of the diode at room temperature:

Assuming that the diode is highly asymmetrically doped, reverse engineer the diode.
a) [10 points] Estimate the built-in potential of the junction.
b) [10 points] Estimate the depletion region thickness at $V=-5 V$.
c) [5 points] Estimate the doping level of the lowly-doped side, N_{L}.
d) [5 points] Estimate the doping level of the highly-doped side, N_{H}.
2. [40 points] Consider the following MOS structure:

a) [10 points] Calculate the flatband voltage.
b) [10 points] Calculate the extent of the depletion region in the semiconductor at threshold.
c) [10 points] Calculate the electric field in the oxide at threshold.
d) [10 points] Calculate the inversion layer sheet charge when the electric field in the oxide is $\mathcal{E}_{o x}=10^{6} \mathrm{~V} / \mathrm{cm}$.
3. [30 points] You are given an MOS capacitor fabricated with a n^{+}polysilicon gate and a p-type substrate with a doping concentration of $N_{a}=5 \times 10^{16} \mathrm{~cm}^{-3}$, as sketched below on the left. The capacitance-voltage curve for this device is shown below on the right.

a) [5 points] Calculate $V_{G B}=V_{1}$.
b) [5 points] Calculate the oxide thickness.
c) [5 points] Calculate $V_{G B}=V_{2}$.
d) $[5$ points $]$ Calculate $C_{\text {min }}$.
e) [5 points] Calculate the electric field in the oxide when $V_{G B}=V_{2}+1 V$.
f) [5 points] Calculate the electric field in the oxide when $V_{G B}=V_{1}-1 V$.

