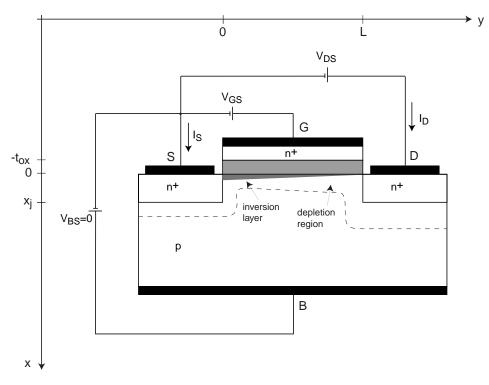
Lecture 10 - MOSFET (II) MOSFET I-V CHARACTERISTICS (cont.) October 13, 2005

Contents:

- 1. The saturation regime
- 2. Backgate characteristics

Reading assignment:

Howe and Sodini, Ch. 4, §4.4


Announcements: Quiz 1: 10/13, 7:30-9:30 PM, (lectures #1-9); open book; <u>must</u> have calculator.

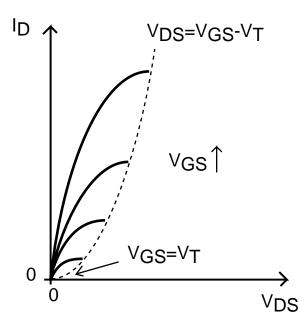
Key questions

- How does the MOSFET work in saturation?
- Does the pinch-off point represent a block to current flow?
- How come the MOSFET current still increases a bit with V_{DS} in saturation?
- How does the application of a back bias affect the MOSFET I-V characteristics?

1. The saturation regime

Geometry of problem:

Regimes of operation so far $(V_{BS} = 0)$:


• Cut-off: $V_{GS} < V_T$, $V_{GD} < V_T$: no inversion layer anywhere underneath gate

 $I_D = 0$

• Linear: $V_{GS} > V_T$, $V_{GD} > V_T$ (with $V_{DS} > 0$): inversion layer everywhere underneath gate

$$I_D = \frac{W}{L} \mu_n C_{ox} (V_{GS} - \frac{V_{DS}}{2} - V_T) V_{DS}$$

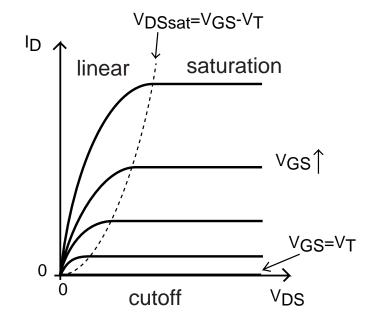
Output characteristics:

 \square Review of Q_n , E_y , V_c , and $V_{GS} - V_c(y)$ in linear regime as V_{DS} increases:

Ohmic drop along channel debiases inversion layer $\Rightarrow I_D$ rises more slowly with V_{DS}

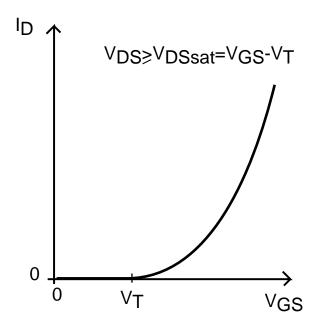
 \Box Drain current saturation

As V_{DS} approaches:


$$V_{DSsat} = V_{GS} - V_T$$

increase in $|E_y|$ compensated by decrease in $|Q_n|$ $\Rightarrow I_D$ saturates to:

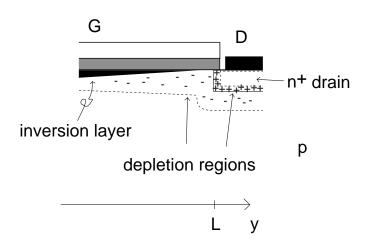
$$I_{Dsat} = I_{Dlin}(V_{DS} = V_{DSsat} = V_{GS} - V_T)$$

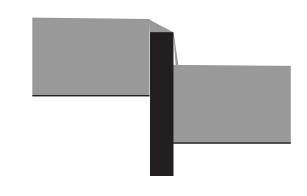

Then:

$$I_{Dsat} = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2$$

$$I_{Dsat} = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2$$

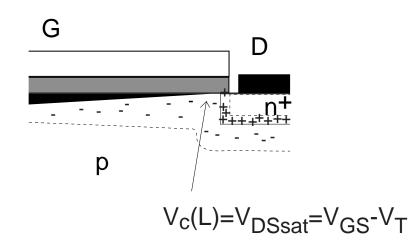
Transfer characteristics in saturation:


 \Box What happens when $V_{DS} = V_{GS} - V_T$?


Charge control relation at drain-end of channel:

$$Q_n(L) = -C_{ox}(V_{GS} - V_{DS} - V_T) = 0$$

No inversion layer at end of channel??!! \Rightarrow *Pinch-off* At pinch-off:

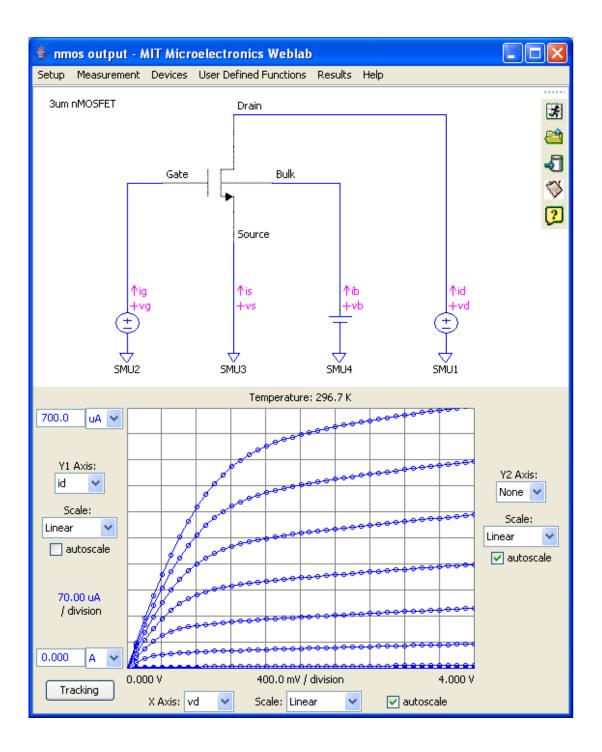

- charge control equation inaccurate around V_T
- electron concentration small but not zero
- electrons move fast because electric field is very high
- dominant electrostatic feature: acceptor charge
- there is no barrier to electron flow (on the contrary!)

- \Box Key dependencies of I_{Dsat}
- $I_{Dsat} \propto (V_{GS} V_T)^2$

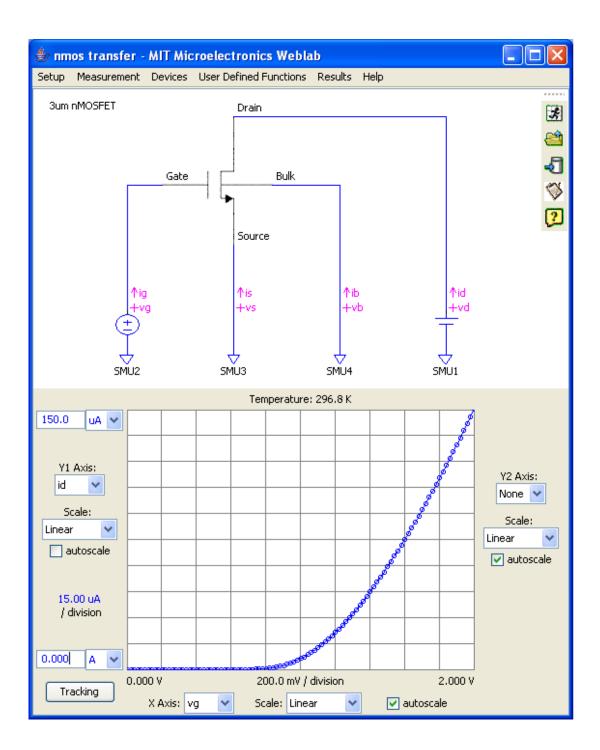
Voltage at pinch-off point ($V_c = 0$ at source):

Drain current at pinch-off:

 \propto lateral electric field $\propto V_{DSsat} = V_{GS} - V_T$

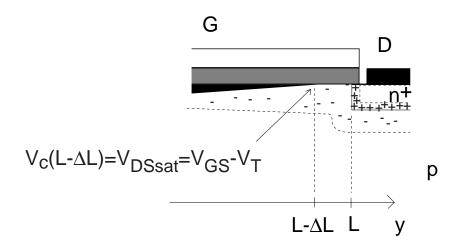

 \propto electron concentration $\propto V_{GS} - V_T$

$$\Rightarrow I_{Dsat} \propto (V_{GS} - V_T)^2$$


• $I_{Dsat} \propto \frac{1}{L}$ $L \downarrow \rightarrow |E_y| \uparrow$

$3 \mu m$ n-channel MOSFET

Output characteristics $(V_{GS} = 0 - 4 V, \Delta V_{GS} = 0.5 V)$:



Transfer characteristics in saturation $(V_{DS} = 3 V)$:

 \Box What happens if $V_{DS} > V_{GS} - V_T$?

Depletion region separating pinch-off point and drain widens (just like in reverse-biased pn junction)

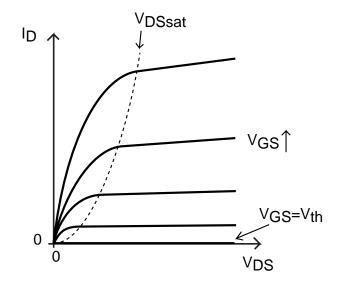
To first order, I_D does not increase past pinchoff:

$$I_D = I_{Dsat} = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2$$

To second order, electrical channel length affected ("channel-length modulation"): $V_{DS} \uparrow \Rightarrow L_{channel} \downarrow \Rightarrow I_D \uparrow$

$$I_D \propto \frac{1}{L - \Delta L} \simeq \frac{1}{L} (1 + \frac{\Delta L}{L})$$

Experimental finding:

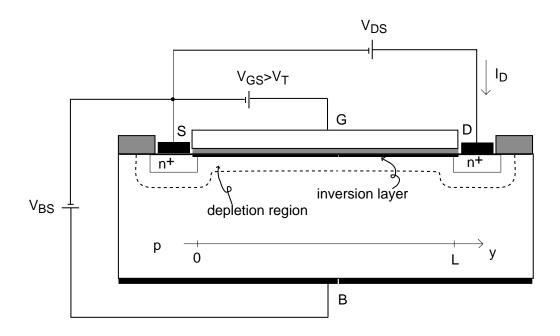

$$\Delta L \propto V_{DS} - V_{DSsat}$$

Hence:

$$\frac{\Delta L}{L} = \lambda (V_{DS} - V_{DSsat})$$

Improved model in saturation:

$$I_{Dsat} = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2 [1 + \lambda (V_{DS} - V_{DSsat})]$$

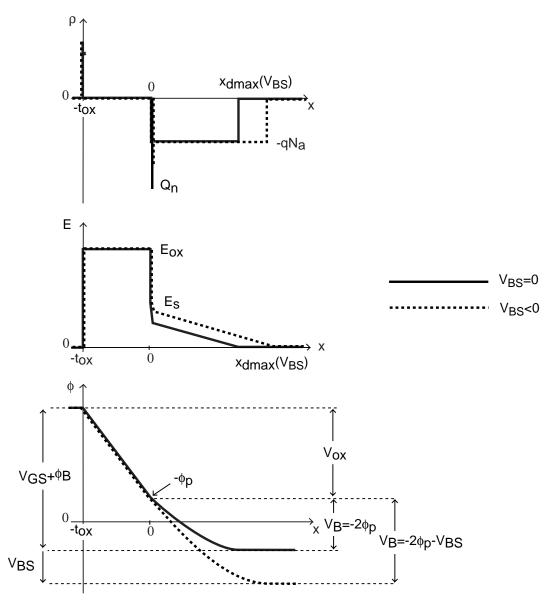

Also, experimental finding:

$$\lambda \propto \frac{1}{L}$$

2. Backgate characteristics

There is a fourth terminal in a MOSFET: the *body*.

What does the body do?


Body contact allows application of bias to body with respect to inversion layer, V_{BS} .

Only interested in $V_{BS} < 0$ (pn diode in reverse bias).

Interested in effect on inversion layer \Rightarrow examine for $V_{GS} > V_T$ (keep V_{GS} constant). Application of $V_{BS} < 0$ increases potential build-up across semiconductor:

$$-2\phi_p \Rightarrow -2\phi_p - V_{BS}$$

Depletion region must widen to produce required extra field:

Consequences of application of $V_{BS} < 0$:

•
$$-2\phi_p \Rightarrow -2\phi_p - V_{BS}$$

- $|Q_B| \uparrow \Rightarrow x_{dmax} \uparrow$
- since V_{GS} constant, V_{ox} unchanged $\Rightarrow E_{ox}$ unchanged $\Rightarrow |Q_s| = |Q_G|$ unchanged
- $|Q_s| = |Q_n| + |Q_B|$ unchanged, but $|Q_B| \uparrow \Rightarrow |Q_n| \downarrow \Rightarrow$ inversion layer charge is reduced!

Application of $V_{BS} < 0$ with constant V_{GS} reduces electron concentration in inversion layer $\Rightarrow V_T \uparrow$

How does V_T change with V_{BS} ?

In
$$V_T$$
 formula change $-2\phi_p$ to $-2\phi_p - V_{BS}$:

$$V_T^{GB}(V_{BS}) = V_{FB} - 2\phi_p - V_{BS} + \gamma \sqrt{(-2\phi_p - V_{BS})}$$

In MOSFETs, interested in V_T between gate and source:

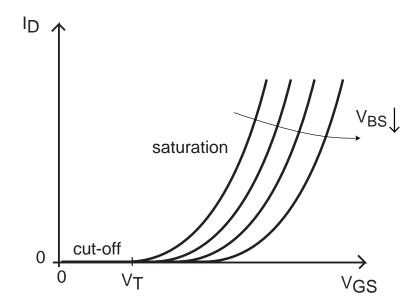
$$V_{GB} = V_{GS} - V_{BS} \implies V_T^{GB} = V_T^{GS} - V_{BS}$$

Then:

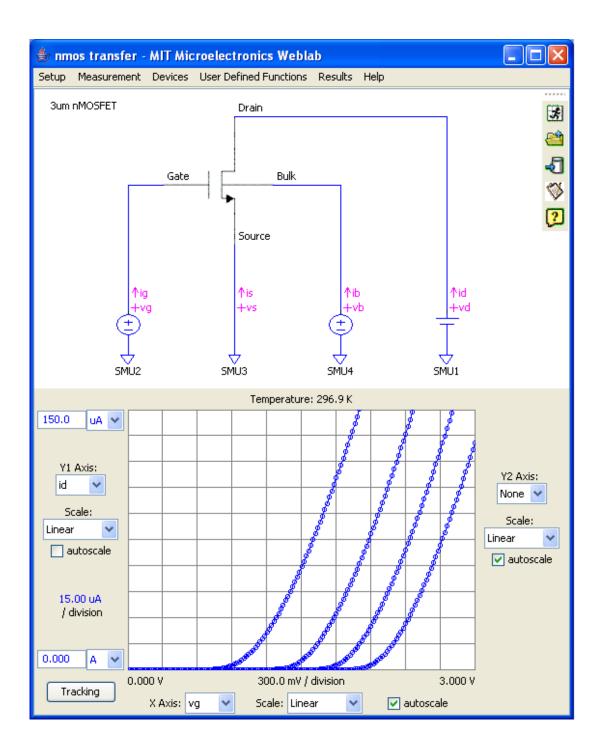
$$V_T^{GS} = V_T^{GB} + V_{BS}$$

And:

$$V_T^{GS}(V_{BS}) = V_{FB} - 2\phi_p + \gamma \sqrt{(-2\phi_p - V_{BS})} \equiv V_T(V_{BS})$$


In the context of the MOSFET, V_T is always defined in terms of *gate-to-source voltage*.

Define:


$$V_{To} = V_T (V_{BS} = 0)$$

Then:

$$V_T(V_{BS}) = V_{To} + \gamma(\sqrt{-2\phi_p - V_{BS}} - \sqrt{-2\phi_p})$$

Backate characteristics ($V_{BS} = 0, -1, -2, -3 V, V_{DS} = 3 V$):

Key conclusions

- MOSFET in saturation $(V_{DS} \ge V_{DSsat})$: pinch-off point at drain-end of channel
 - electron concentration small, but
 - electrons move very fast;
 - pinch-off point does not represent a barrier to electron flow
- In saturation, I_D saturates:

$$I_{Dsat} = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2$$

- But..., due to channel-length modulation, I_{Dsat} increases slightly with V_{DS}
- Application of back bias shifts V_T (back-gate effect)