Lecture 14-Digital Circuits (III) CMOS

October 27, 2005

Contents:

1. Complementary MOS (CMOS) inverter: introduction
2. CMOS inverter: noise margins
3. CMOS inverter: propagation delay
4. CMOS inverter: dynamic power

Reading assignment:

Howe and Sodini, Ch. 5, §5.4

Announcements:

- Cadence tutorial by Kerwin Johnson in place of regular recitations on Friday 10/28

Key questions

- How does CMOS work?
- What is special about CMOS as a logic technology?
- What are the key design parameters of a CMOS inverter?
- How can one estimate the propagation delay of a CMOS inverter?
- Does CMOS burn any power?

1. Complementary MOS (CMOS) Inverter

Circuit schematic:

Basic operation:

- $V_{I N}=0 \Rightarrow V_{O U T}=V_{D D}$

$$
V_{G S n}=0<V_{T n} \Rightarrow \text { NMOS OFF }
$$

$$
V_{S G p}=V_{D D}>-V_{T p} \Rightarrow \text { PMOS ON }
$$

- $V_{I N}=V_{D D} \Rightarrow V_{O U T}=0$

$$
\begin{aligned}
& V_{G S n}=V_{D D}>V_{T n} \Rightarrow \text { NMOS ON } \\
& V_{S G p}=0<-V_{T p} \Rightarrow \mathrm{PMOS} \text { OFF }
\end{aligned}
$$

Output characteristics of both transistors:

Note:
$V_{I N}=V_{G S n}=V_{D D}-V_{S G p} \Rightarrow V_{S G p}=V_{D D}-V_{I N}$
$V_{O U T}=V_{D S n}=V_{D D}-V_{S D p} \Rightarrow V_{S D p}=V_{D D}-V_{O U T}$
$I_{D n}=-I_{D p}$
Combine into single diagram of I_{D} vs. $V_{O U T}$ with $V_{I N}$ as parameter.

* no current while idling in any logic state.

Transfer function:

* "rail-to-rail" logic: logic levels are 0 and $V_{D D}$
\star high $\left|A_{v}\right|$ around logic threshold \Rightarrow good noise margins

Transfer characteristics of CMOS inverter in WebLab:

2. CMOS inverter: noise margins

- Calculate V_{M}
- Calculate $A_{v}\left(V_{M}\right)$
- Calculate $N M_{L}$ and $N M_{H}$
\square Calculate $V_{M}\left(V_{M}=V_{I N}=V_{O U T}\right)$
At V_{M} both transistors saturated:

$$
\begin{gathered}
I_{D n}=\frac{1}{2} \frac{W_{n}}{L_{n}} \mu_{n} C_{o x}\left(V_{M}-V_{T n}\right)^{2} \\
-I_{D p}=\frac{1}{2} \frac{W_{p}}{L_{p}} \mu_{p} C_{o x}\left(V_{D D}-V_{M}+V_{T p}\right)^{2}
\end{gathered}
$$

Define:

$$
k_{n}=\frac{W_{n}}{L_{n}} \mu_{n} C_{o x}, \quad k_{p}=\frac{W_{p}}{L_{p}} \mu_{p} C_{o x}
$$

Since:

$$
I_{D n}=-I_{D p}
$$

Then:

$$
\frac{1}{2} k_{n}\left(V_{M}-V_{T n}\right)^{2}=\frac{1}{2} k_{p}\left(V_{D D}-V_{M}+V_{T p}\right)^{2}
$$

Solve for V_{M} :

$$
V_{M}=\frac{V_{T n}+\sqrt{\frac{k_{p}}{k_{n}}}\left(V_{D D}+V_{T p}\right)}{1+\sqrt{\frac{k_{p}}{k_{n}}}}
$$

Usually, $V_{T n}$ and $V_{T p}$ fixed and $V_{T n}=-V_{T p}$
$\Rightarrow V_{M}$ engineered through k_{p} / k_{n} ratio

- Symmetric case: $k_{n}=k_{p}$

$$
V_{M}=\frac{V_{D D}}{2}
$$

This implies:

$$
\frac{k_{p}}{k_{n}}=1=\frac{\frac{W_{p}}{L_{p}} \mu_{p} C_{o x}}{\frac{W_{n}}{L_{n}} \mu_{n} C_{o x}} \simeq \frac{\frac{W_{p}}{L_{p}} \mu_{p}}{\frac{W_{n}}{L_{n}} 2 \mu_{p}} \Rightarrow \frac{W_{p}}{L_{p}} \simeq 2 \frac{W_{n}}{L_{n}}
$$

Since usually $L_{p} \simeq L_{n} \Rightarrow W_{p} \simeq 2 W_{n}$.

- Asymmetric case: $k_{n} \gg k_{p}$, or $\frac{W_{n}}{L_{n}} \gg \frac{W_{p}}{L_{p}}$

$$
V_{M} \simeq V_{T n}
$$

NMOS turns on as soon as $V_{I N}$ goes above $V_{T n}$.

- Asymmetric case: $k_{n} \ll k_{p}$, or $\frac{W_{n}}{L_{n}} \ll \frac{W_{p}}{L_{p}}$

$$
V_{M} \simeq V_{D D}+V_{T p}
$$

PMOS turns on as soon as $V_{I N}$ goes below $V_{D D}+V_{T p}$.
Can engineer V_{M} anywhere between $V_{T n}$ and $V_{D D}+V_{T p}$.

\square Calculate $A_{v}\left(V_{M}\right)$

Small-signal model:

$$
\begin{aligned}
& A_{v}=-\left(g_{m n}+g_{m p}\right)\left(r_{o n} / / r_{o p}\right)
\end{aligned}
$$

This can be rather large.

\square Noise margins

- Noise-margin-low:

$$
V_{I L}=V_{M}-\frac{V_{D D}-V_{M}}{\left|A_{v}\right|}
$$

Therefore:

$$
N M_{L}=V_{I L}-V_{O L}=V_{I L}=V_{M}-\frac{V_{D D}-V_{M}}{\left|A_{v}\right|}
$$

In the limit of $\left|A_{v}\right| \rightarrow \infty$:

$$
N M_{L} \rightarrow V_{M}
$$

- Noise-margin-high:

$$
V_{I H}=V_{M}\left(1+\frac{1}{\left|A_{v}\right|}\right)
$$

and

$$
N M_{H}=V_{O H}-V_{I H}=V_{D D}-V_{M}\left(1+\frac{1}{\left|A_{v}\right|}\right)
$$

In the limit of $\left|A_{v}\right| \rightarrow \infty$:

$$
N M_{H} \rightarrow V_{D D}-V_{M}
$$

When $V_{M}=\frac{V_{D D}}{2} \Rightarrow N M_{L}=N M_{H}=\frac{V_{D D}}{2}$

3. CMOS inverter: propagation delay

Inverter propagation delay: time delay between input and output signals; key figure of merit of logic speed.

Typical propagation delays: <1 ns .
Complex logic system has 20-50 propagation delays per clock cycle.

Estimation of t_{p} : use square-wave at input

Average propagation delay:

$$
t_{p}=\frac{1}{2}\left(t_{P H L}+t_{P L H}\right)
$$

\square Propagation delay high-to-low:

During early phases of discharge, NMOS is saturated and PMOS is cut-off.

Time to discharge half of C_{L} :

$$
t_{P H L} \simeq \frac{\frac{1}{2} \text { charge of } C_{L} @ t=0^{-}}{\text {discharge current }}
$$

Charge in C_{L} at $t=0^{-}$:

$$
Q_{L}\left(t=0^{-}\right)=C_{L} V_{D D}
$$

Discharge current (NMOS in saturation):

$$
I_{D n}=\frac{W_{n}}{2 L_{n}} \mu_{n} C_{o x}\left(V_{D D}-V_{T n}\right)^{2}
$$

Then:

$$
t_{P H L} \simeq \frac{C_{L} V_{D D}}{\frac{W_{n}}{L_{n}} \mu_{n} C_{o x}\left(V_{D D}-V_{T n}\right)^{2}}
$$

\square Propagation delay low-to-high:

During early phases of charge, PMOS is saturated and NMOS is cut-off.

Time to charge half of C_{L} :

$$
t_{P L H} \simeq \frac{\frac{1}{2} \text { charge of } C_{L} @ t=\infty}{\text { charge current }}
$$

Charge in C_{L} at $t=\infty$:

$$
Q_{L}(t=\infty)=C_{L} V_{D D}
$$

Charge current (PMOS in saturation):

$$
-I_{D p}=\frac{W_{p}}{2 L_{p}} \mu_{p} C_{o x}\left(V_{D D}+V_{T p}\right)^{2}
$$

Then:

$$
t_{P L H} \simeq \frac{C_{L} V_{D D}}{\frac{W_{p}}{L_{p}} \mu_{p} C_{o x}\left(V_{D D}+V_{T p}\right)^{2}}
$$

Key dependencies of propagation delays:

- $V_{D D} \uparrow \Rightarrow t_{p} \downarrow$

Reason: $V_{D D} \uparrow \Rightarrow Q\left(C_{L}\right) \uparrow$, but also $I_{D} \uparrow$ Trade-off: $V_{D D} \uparrow$, more power usage.

- $L \downarrow \Rightarrow t_{p} \downarrow$

Reason: $L \downarrow \Rightarrow I_{D} \uparrow$
Trade-off: manufacturing costs!

Components of load capacitance C_{L} :

- following logic gates: must add capacitance presented by each gate of every transistor the output is connected to
- interconnect wire that connects output to input of following logic gates
- own drain-to-body capacitances

$$
C_{L}=C_{G}+C_{w i r e}+C_{D B n}+C_{D B p}
$$

[See details in Howe \& Sodini §5.4.3]

4. CMOS inverter: dynamic power

- In any of the two logic states: one transistor always $\mathrm{OFF} \Rightarrow$ zero static power dissipation.
- Dynamic power?

Every complete transient, C_{L} is charged up to $V_{D D}$ and then discharged to 0
\Rightarrow energy dissipated
\Rightarrow clock frequency $\uparrow \Rightarrow$ dissipated power \uparrow
\square Dynamic power dissipated while charging load

1. Energy provided by battery during transient:

$$
\begin{aligned}
E_{S} & =\int_{0}^{\infty} V_{D D} i_{C}(t) d t=V_{D D} \int_{0}^{\infty} C_{L} \frac{d v_{O U T}}{d t} d t= \\
& =C_{L} V_{D D} \int_{0}^{V_{D D}} d v_{O U T}=C_{L} V_{D D}^{2}
\end{aligned}
$$

2. Energy stored in capacitor during transient:

$$
\Delta E_{C}=E_{C}(t=\infty)-E_{C}(t=0)=\frac{1}{2} C_{L} V_{D D}^{2}
$$

3. Energy dissipated in PMOS during transient:

$$
E_{P}=E_{S}-\Delta E_{C}=\frac{1}{2} C_{L} V_{D D}^{2}
$$

\square Dynamic power dissipated while discharging load

1. Energy provided by battery during transient:

$$
E_{S}=\int_{0}^{\infty} V_{D D} i_{D D}(t) d t=0
$$

2. Energy removed from capacitor during transient:

$$
\Delta E_{C}=E_{C}(t=0)-E_{C}(t=\infty)=\frac{1}{2} C_{L} V_{D D}^{2}
$$

3. Energy dissipated in NMOS during transient:

$$
E_{N}=\Delta E_{C}=\frac{1}{2} C_{L} V_{D D}^{2}
$$

\square Energy dissipated in complete cycle

$$
E_{D}=E_{P}+E_{N}=\Sigma E_{S}=C_{L} V_{D D}^{2}
$$

\square Power dissipation
If complete switching cycle takes place f times per second:

$$
P_{D}=f E_{D}=f C_{L} V_{D D}^{2}
$$

Fundamental trade-off between switching speed ant power dissipation!

Key dependencies in dynamic power:

- $f \uparrow \Rightarrow P_{D} \uparrow$, charge and discharge C_{L} more frequently
- $C_{L} \uparrow \Rightarrow P_{D} \uparrow$, more charge being shuttled around
- $V_{D D} \uparrow \Rightarrow P_{D} \uparrow$, more charge being shuttled around

Key conclusions

- Key features of CMOS inverter:
- no current while idling in any logic state
- "rail-to-rail" logic: logic levels are 0 and $V_{D D}$
- high $\left|A_{v}\right|$ around logic threshold \Rightarrow good noise margins
- CMOS inverter logic threshold and noise margins engineered through W_{n} / L_{n} and W_{p} / L_{p}.
- Key dependences of propagation delay:
$-V_{D D} \uparrow \Rightarrow t_{p} \downarrow$
$-L \downarrow \Rightarrow t_{p} \downarrow$
- Dynamic power dissipated in CMOS:

$$
P_{D}=f E_{D}=f C_{L} V_{D D}^{2}
$$

Fundamental trade-off between switching speed and power dissipation.

