Lecture 15 - The pn Junction Diode (I)

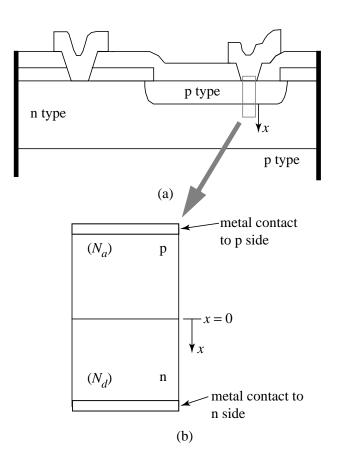
I-V CHARACTERISTICS

November 1, 2005

Contents:

- 1. pn junction under bias
- 2. I-V characteristics

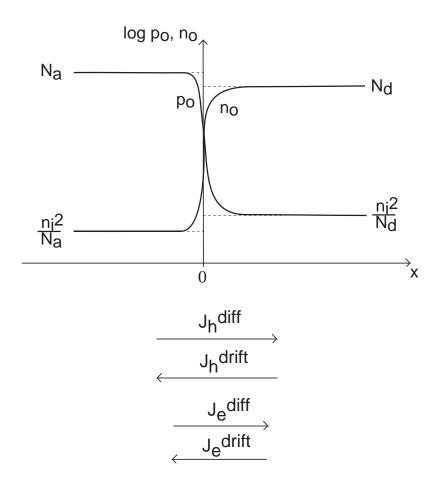
Reading assignment:


Howe and Sodini, Ch. 6, §§6.1-6.3

Key questions

- Why does the pn junction diode exhibit current rectification?
- Why does the junction current in forward bias increase as $\sim \exp \frac{qV}{kT}$?
- What are the leading dependences of the saturation current (the factor in front of the exponential)?

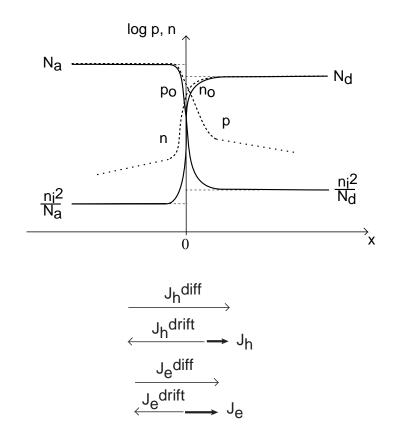
1. PN junction under bias


Focus on intrinsic region:

Upon application of voltage:

- electrostatics upset: depletion region widens or shrinks
- current flows (with rectifying behavior)
- carrier charge storage

Carrier profiles in thermal equilibrium:



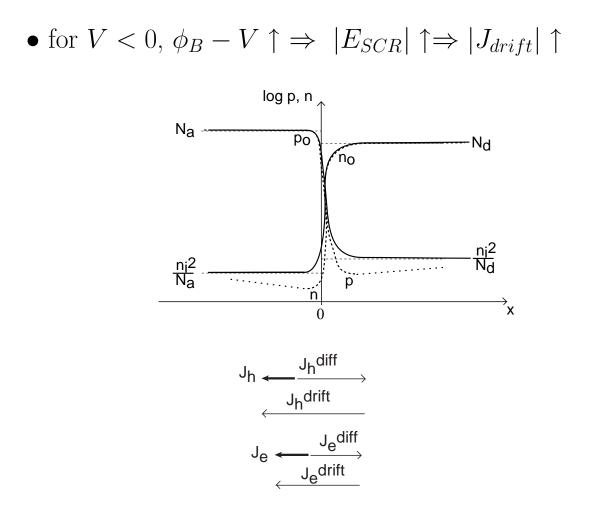
Inside SCR in thermal equilibrium: dynamic balance between drift and diffusion for electrons and holes.

$$|J_{drift}| = |J_{diff}|$$

Carrier concentrations in pn junction under bias:

• for V > 0, $\phi_B - V \downarrow \Rightarrow |E_{SCR}| \downarrow \Rightarrow |J_{drift}| \downarrow$

Current balance in SCR broken:


$$|J_{drift}| < |J_{diff}|$$

Net diffusion current in SCR

 \Rightarrow minority carrier *injection* into QNR's

 \Rightarrow excess minority carrier concentrations in QNR's

Lots of majority carriers in QNR's \Rightarrow current can be high.

Current balance in SCR broken:

$$|J_{drift}| > |J_{diff}|$$

Net drift current in SCR \Rightarrow minority carrier *extraction* from QNR's \Rightarrow *deficit* of minority carrier concentrations in QNR's

Few minority carriers in QNR's \Rightarrow current small.

What happens if minority carrier concentrations in QNR change from equilibrium?

 \Rightarrow Balance between generation and recombination broken

• In thermal equilibrium: rate of break up of Si-Si bonds balanced by rate of formation of bonds

Si-Si bond $\xrightarrow{\text{generation}}_{\text{recombination}} n_0 + p_0$

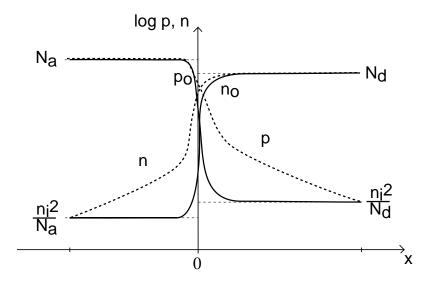
If minority carrier injection:
 ⇒ carrier concentration above equilibrium
 ⇒ recombination prevails

Si-Si bond < n + p

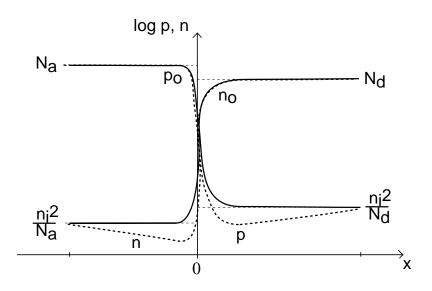
- If minority carrier extraction:
 - \Rightarrow carrier concentrations below equilibrium
 - \Rightarrow generation prevails

Where does generation and recombination take place?

In modern devices, recombination mainly takes place at *surfaces*:

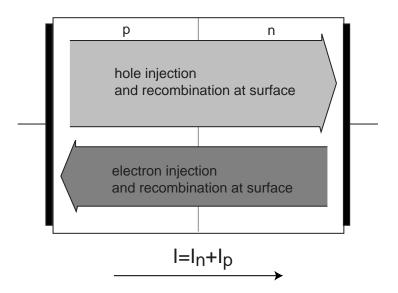

- perfect crystalline periodicity broken at a surface
 ⇒ lots of broken bonds: generation and recombination centers
- modern devices are very small \Rightarrow high area to volume ratio.

High generation and recombination activity at surfaces \Rightarrow carrier concentrations cannot deviate much from equilibrium values:

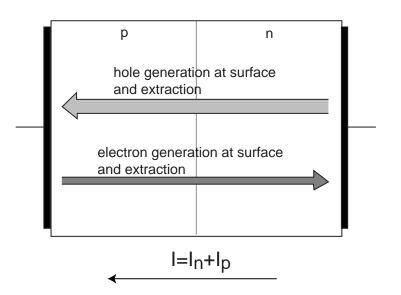

$$n(s) \simeq n_o, \ p(s) \simeq p_o$$

Complete physical picture for pn diode under bias:

• Forward bias: injected minority carriers diffuse through $QNR \Rightarrow$ recombine at semiconductor surface

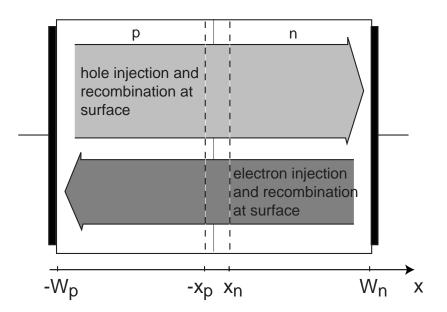


• Reverse bias: minority carriers extracted by SCR \Rightarrow generated at surface and diffuse through QNR



The current view:

• Forward bias:



• Reverse bias:

What limits the magnitude of the diode current?

- \bullet <u>not</u> generation or recombination rate at surfaces
- \bullet <u>not</u> injection or extraction rates through SCR
- diffusion rate through QNR's

Development of analytical current model:

- 1. Calculate concentration of minority carriers at edges of SCR, $p(x_n)$ and $n(-x_p)$
- 2. calculate minority carrier diffusion current in each QNR, I_n and I_p
- 3. sum electron and hole diffusion currents, $I = I_n + I_p$

2. I-V characteristics

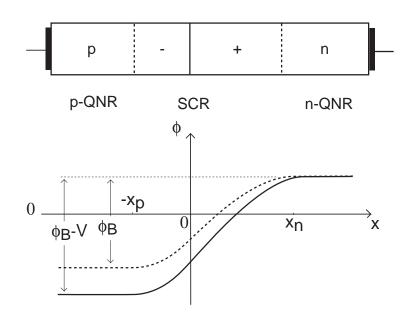
 \square STEP 1: computation of minority carrier boundary conditions at edges of SCR

In thermal equilibrium in SCR, $|J_{drift}| = |J_{diff}|$, and

$$\frac{n_o(x_1)}{n_o(x_2)} = \exp\frac{q[\phi(x_1) - \phi(x_2)]}{kT}$$

and

$$\frac{p_o(x_1)}{p_o(x_2)} = \exp \frac{-q[\phi(x_1) - \phi(x_2)]}{kT}$$


Under bias in SCR, $|J_{drift}| \neq |J_{diff}|$, but if difference small with respect to absolute values of current:

$$\frac{n(x_1)}{n(x_2)} \simeq \exp \frac{q[\phi(x_1) - \phi(x_2)]}{kT}$$

and

$$\frac{p(x_1)}{p(x_2)} \simeq \exp \frac{-q[\phi(x_1) - \phi(x_2)]}{kT}$$

This is called *quasi-equilibrium*.

At edges of SCR, then:

$$\frac{n(x_n)}{n(-x_p)} \simeq \exp \frac{q[\phi(x_n) - \phi(-x_p)]}{kT} = \exp \frac{q(\phi_B - V)}{kT}$$

and

$$\frac{p(x_n)}{p(-x_p)} \simeq \exp \frac{-q[\phi(x_n) - \phi(-x_p)]}{kT} = \exp \frac{-q(\phi_B - V)}{kT}$$

But:

 $p(-x_p) \simeq N_a$ and $n(x_n) \simeq N_d$

This is the *low-level injection* approximation [will discuss in more detail next time].

Then:

$$n(-x_p) \simeq N_d \exp \frac{q(V - \phi_B)}{kT}$$

and

$$p(x_n) \simeq N_a \exp \frac{q(V - \phi_B)}{kT}$$

Built-in potential:

$$\phi_B = \frac{kT}{q} \ln \frac{N_d N_a}{n_i^2}$$

Plug in above and get:

$$n(-x_p) \simeq \frac{n_i^2}{N_a} \exp \frac{qV}{kT}$$

and

$$p(x_n) \simeq \frac{n_i^2}{N_d} \exp \frac{qV}{kT}$$

Voltage dependence:

• Equilibrium (V = 0):

$$n(-x_p) = \frac{n_i^2}{N_a} \qquad p(x_n) = \frac{n_i^2}{N_d}$$

• Forward (V > 0):

$$n(-x_p) \gg \frac{n_i^2}{N_a} \qquad p(x_n) \gg \frac{n_i^2}{N_d}$$

Lots of carriers available for injection: $\Rightarrow V \uparrow \rightarrow$ concentration of injected carriers \uparrow \Rightarrow forward current can be high.

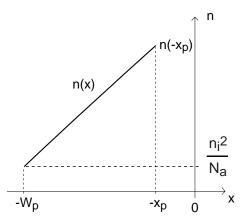
• Reverse (V < 0):

$$n(-x_p) \ll \frac{n_i^2}{N_a} \qquad p(x_n) \ll \frac{n_i^2}{N_d}$$

Few carriers available for extraction:

 \Rightarrow reverse current is small.

Minority carrier concentration becomes vanishingly small:


 \Rightarrow reverse current saturates.

Rectification property of pn diode arises from minoritycarrier boundary conditions at edges of SCR. \square STEP 2: Diffusion current in QNR:

Diffusion equation (for electrons in p-QNR):

$$J_n = qD_n \frac{dn}{dx}$$

Inside p-QNR, electrons diffuse to reach and recombine at contact $\Rightarrow J_n$ constant in p-QNR $\Rightarrow n(x)$ linear.

Boundary conditions:

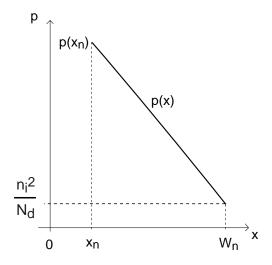
$$n(x = -W_p) = n_o = \frac{n_i^2}{N_a} \qquad n(-x_p) = \frac{n_i^2}{N_a} \exp \frac{qV}{kT}$$

Electron profile:

$$n_p(x) = n_p(-x_p) + \frac{n_p(-x_p) - n_p(-W_p)}{-x_p + W_p}(x + x_p)$$

$$n_p(x) = n_p(-x_p) + \frac{n_p(-x_p) - n_p(-W_p)}{-x_p + W_p}(x + x_p)$$

Electron current density:


$$J_n = qD_n \frac{dn}{dx} = qD_n \frac{n_p(-x_p) - n_p(-W_p)}{W_p - x_p}$$

$$= qD_n \frac{\frac{n_i^2}{N_a} \exp \frac{qV}{kT} - \frac{n_i^2}{N_a}}{W_p - x_p}$$

or

$$J_n = q \frac{n_i^2}{N_a} \frac{D_n}{W_p - x_p} (\exp \frac{qV}{kT} - 1)$$

Similarly for hole flow in n-QNR:

Hole current density:

$$J_p = q \frac{n_i^2}{N_d} \frac{D_p}{W_n - x_n} (\exp \frac{qV}{kT} - 1)$$

\square STEP 3: sum both current components:

$$J = J_n + J_p = q n_i^2 \left(\frac{1}{N_a} \frac{D_n}{W_p - x_p} + \frac{1}{N_d} \frac{D_p}{W_n - x_n}\right) \left(\exp\frac{qV}{kT} - 1\right)$$

Current:

$$I = qAn_i^2 \left(\frac{1}{N_a} \frac{D_n}{W_p - x_p} + \frac{1}{N_d} \frac{D_p}{W_n - x_n}\right) \left(\exp\frac{qV}{kT} - 1\right)$$

often written as:

$$I = I_o(\exp\frac{qV}{kT} - 1)$$

with

$$I_o \equiv \text{saturation current [A]}$$

B.C.'s contain both forward and reverse bias \Rightarrow equation valid in forward and reverse bias. [will discuss this result in detail next time]

Key conclusions

- Application of voltage to pn junction results in disruption of balance between drift and diffusion in SCR:
 - in forward bias, minority carriers are *injected* into quasi-neutral regions
 - in reverse bias, minority carriers are *extracted* from quasi-neutral regions
- In forward bias, injected minority carriers recombine at surface.
- In reverse bias, extracted minority carriers are generated at surface.
- Computation of boundary conditions across SCR exploits *quasi-equilibrium*: balance between diffusion and drift in SCR disturbed very little.
- Rate limiting step to current flow: diffusion through quasi-neutral regions.
- I-V characteristics of p-n diode:

$$I = I_o(\exp\frac{qV}{kT} - 1)$$