Lecture 2 - Semiconductor Physics (I)

September 13, 2005

Contents:

- 1. Silicon bond model: electrons and holes
- 2. Generation and recombination
- 3. Thermal equilibrium
- 4. Intrinsic semiconductor
- 5. Doping; extrinsic semiconductor

Reading assignment:

Howe and Sodini, Ch. 2, \S 2.1-2.3

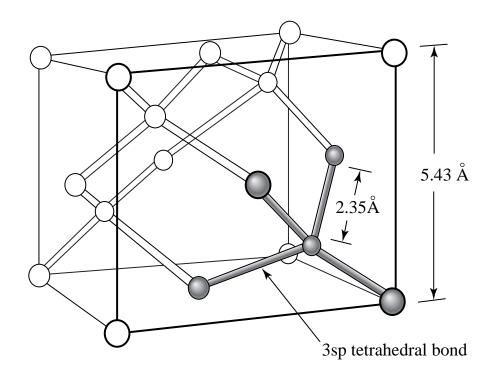
Key questions

- How do semiconductors conduct electricity?
- What is a "hole"?
- How many electrons and holes are there in a semiconductor in thermal equilibrium at a certain temperature?
- How can one engineer the conductivity of semiconductors?

1. Silicon bond model: electrons and holes

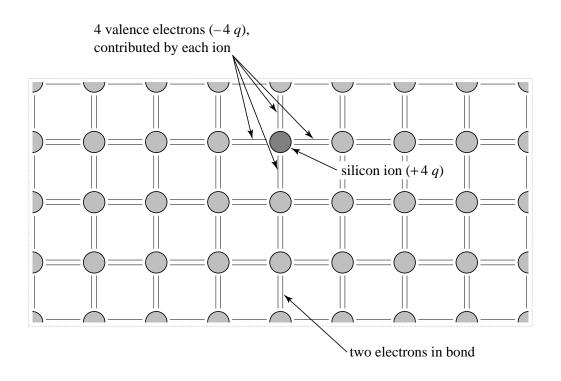
Si is in Column IV of periodic table:

	IIIA	IVA	VA	VIA
	5	6	7	8
	В	С	Ν	0
	13	14	15	16
IIB	AI	Si	Ρ	S
30	31	32	33	34
Zn	Ga	Ge	As	Se
48	49	50	51	52
Cd	In	Sn	Sb	Те


Electronic structure of Si atom:

- 10 core electrons (tightly bound)
- 4 valence electrons (loosely bound, responsible for most chemical properties)

Other semiconductors:


- \bullet Ge, C (diamond form), SiGe
- GaAs, InP, InGaAs, InGaAsP, ZnSe, CdTe (on average, 4 valence electrons per atom)

Silicon crystal structure:

- Silicon is a crystalline material:
 - long range atomic arrangement
- *Diamond* lattice:
 - atoms tetrahedrally bonded by sharing valence electrons (*covalent bonding*)
- Each atom shares 8 electrons:
 - low energy and stable situation
- Si atomic density: $5 \times 10^{22} \ cm^{-3}$

Simple "flattened" model of Si crystal:

At 0K:

- \bullet all bonds satisfied \rightarrow all valence electrons engaged in bonding
- no "free" electrons

At finite temperature:

- finite thermal energy
- some bonds are broken
- "free" electrons (mobile negative charge, $-1.6 \times 10^{-19} C$)
- "free" holes (mobile positive charge, $1.6 \times 10^{-19} C$)

"Free" electrons and holes are called *carriers*:

• mobile charged particles

Beware: picture is misleading!

• electrons and holes in semiconductors are "fuzzier": they span many atomic sites.

A few definitions:

- \bullet in 6.012, "electron" means <u>free</u> electron
- not concerned with bonding electrons or core electrons
- define:

 $n \equiv (\text{free}) \text{ electron concentration } [cm^{-3}]$ $p \equiv \text{hole concentration } [cm^{-3}]$

2. Generation and Recombination

GENERATION = break up of covalent bond to form electron and hole

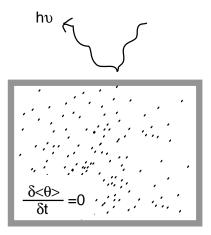
- requires energy from thermal or optical sources (or other external sources)
- generation rate: $G = G_{th} + G_{opt} + \dots [cm^{-3} \cdot s^{-1}]$
- in general, atomic density $\gg n, p \Rightarrow$

$$G \neq f(n,p)$$

– supply of breakable bonds virtually inexhaustible

RECOMBINATION = formation of bond by bringing together electron and hole

- releases energy in thermal or optical form
- recombination rate: $R [cm^{-3} \cdot s^{-1}]$
- a recombination event requires 1 electron + 1 hole \Rightarrow


$$R \propto n \cdot p$$

Generation and recombination most likely at surfaces where periodic crystalline structure is broken.

3. Thermal equilibrium

Thermal equilibrium =

steady state + absence of external energy sources

• Generation rate in thermal equilibrium: $G_o = f(T)$

• Recombination rate in thermal equilibrium: $R_o \propto n_o \cdot p_o$ In thermal equilibrium:

$$G_o = R_o \Rightarrow n_o p_o = f(T) \equiv n_i^2(T)$$

Important consequence:

In thermal equilibrium and for a given semiconductor, np product is a constant that depends only on temperature! Electron-hole formation can be seen as chemical reaction:

$$bond \rightleftharpoons e^- + h^+$$

similar to water decomposition reaction:

$$H_2 O \rightleftharpoons H^+ + O H^-$$

Law-of-mass action relates concentration of reactants and reaction products. For water:

$$K = \frac{[H^+][OH^-]}{[H_2O]}$$

Since:

$$[H_2O] \gg [H^+], \ [OH^-]$$

Then:

$$[H_2O] \simeq constant$$

Hence:

$$[H^+][OH^-] \simeq constant$$

4. Intrinsic semiconductor

QUESTION: In a perfectly pure semiconductor in thermal equilibrium at finite temperature, how many electrons and holes are there?

Since when a bond breaks, an electron and a hole are produced:

$$n_o = p_o$$

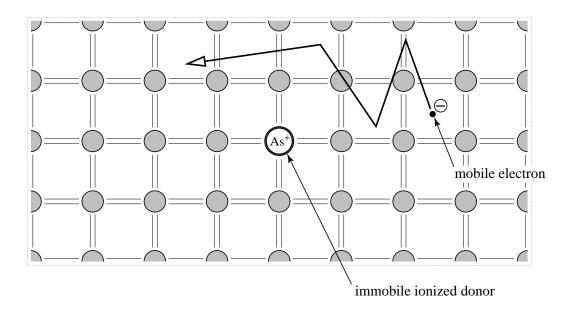
Also:

$$n_o p_o = n_i^2$$

Then:

$$n_o = p_o = n_i$$

 $n_i \equiv intrinsic$ carrier concentration $[cm^{-3}]$


In Si at 300 K ("room temperature"): $n_i \simeq 1 \times 10^{10} \ cm^{-3}$ n_i very strong function of temperature: $T \uparrow \rightarrow n_i \uparrow$ Note: an intrinsic semiconductor need not be perfectly pure [see next] 5. **Doping**: introduction of foreign atoms to engineer semiconductor electrical properties

A. DONORS: introduce electrons to the semiconductor (but not holes)

• For Si, group-V atoms with 5 valence electrons (As, P, Sb)

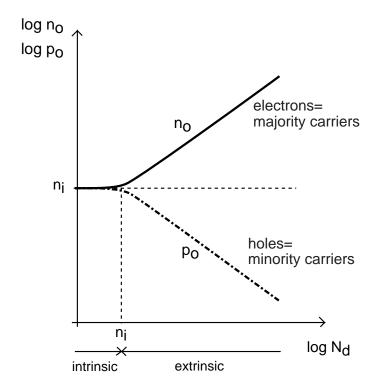
	IIIA	IVA	VA	VIA
	₅	C e	7 NI	8
			N	
IIB	AI	Si	P	S ¹⁶
30	31	32	33	34
Zn	Ga	Ge	As	Se
48	49	50	51	52
Cd	In	Sn	Sb	Те

- 4 electrons of donor atom participate in bonding
- 5th electron easy to release
 - at room temperature, each donor releases 1 electron that is available for conduction
- donor site become positively charged (fixed charge)

Define:

$$N_d \equiv \text{donor concentration } [cm^{-3}]$$

• If $N_d \ll n_i$, doping irrelevant (*intrinsic* semiconductor) $\rightarrow n_o = p_o = n_i$ • If $N_d \gg n_i$, doping controls carrier concentrations (*extrinsic* semiconductor) \rightarrow

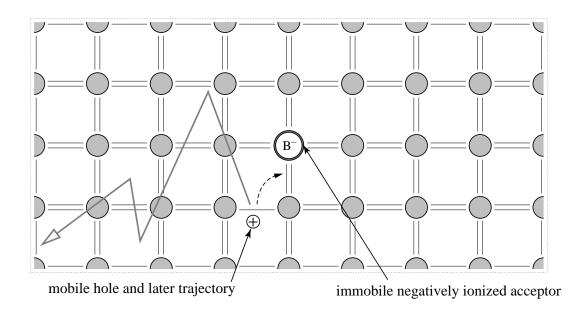

$$n_o = N_d \qquad \qquad p_o = \frac{n_i^2}{N_d}$$

0

Note: $n_o \gg p_o$: *n*-type semiconductor

Example: $N_d = 10^{17} \ cm^{-3} \rightarrow n_o = 10^{17} \ cm^{-3}, \ p_o = 10^3 \ cm^{-3}.$

In general: $N_d \sim 10^{15} - 10^{20} \ cm^{-3}$



Chemical reaction analogy: dissolve a bit of KOH into water $\Rightarrow [OH^{-}]\uparrow, [H^{+}]\downarrow$ B. ACCEPTORS: introduce holes to the semiconductor (but not electrons)

• For Si, group-III atoms with 3 valence electrons (B)

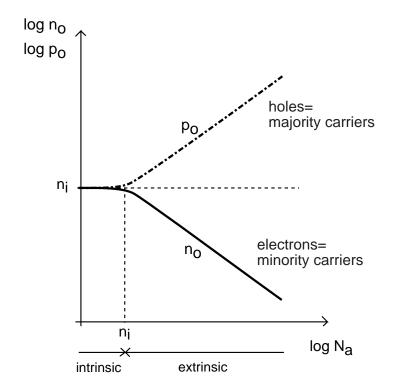
	IIIA	IVA	VA	VIA
	5	6	7	8
	В	С	Ν	0
	13	14	15	16
IIB	AI	Si	Ρ	S
30	31	32	33	34
Zn	Ga	Ge	As	Se
48	49	50	51	52
Cd	In	Sn	Sb	Те

- 3 electrons used in bonding to neighboring Si atoms
- 1 bonding site "unsatisfied":
 - easy to "accept" neighboring bonding electron to complete all bonds
 - at room temperature, each acceptor releases 1 hole that is available to conduction
- acceptor site become negatively charged (fixed charge)

Define:

$$N_a \equiv \text{acceptor concentration } [cm^{-3}]$$

• If $N_a \ll n_i$, doping irrelevant (*intrinsic* semiconductor) $\rightarrow n_o = p_o = n_i$ • If $N_a \gg n_i$, doping controls carrier concentrations (*extrinsic* semiconductor) \rightarrow


$$p_o = N_a \qquad \qquad n_o = \frac{n_i^2}{N_a}$$

റ

Note: $p_o \gg n_o$: *p*-type semiconductor

Example: $N_a = 10^{16} \ cm^{-3} \rightarrow p_o = 10^{16} \ cm^{-3}, \ n_o = 10^4 \ cm^{-3}.$

In general: $N_a \sim 10^{15} - 10^{20} \ cm^{-3}$

Chemical reaction analogy: dissolve a bit of H_2SO_4 into water $\Rightarrow [H^+] \uparrow, [OH^-] \downarrow$

Summary

- In a semiconductor, there are two types of "carriers": electrons and holes
- In thermal equilibrium and for a given semiconductor $n_o p_o$ is a constant that only depends on temperature:

$$n_o p_o = n_i^2$$

• For Si at room temperature:

$$n_i \simeq 10^{10} \ cm^{-3}$$

• Intrinsic semiconductor: "pure" semiconductor.

$$n_o = p_o = n_i$$

• Carrier concentrations can be engineered by addition of "dopants" (selected foreign atoms):

- n-type semiconductor:

$$n_o = N_d, \qquad p_o = \frac{n_i^2}{N_d}$$

- p-type semiconductor:

$$p_o = N_a, \qquad n_o = \frac{n_i^2}{N_a}$$