Lecture 20 - Transistor Amplifiers (II)

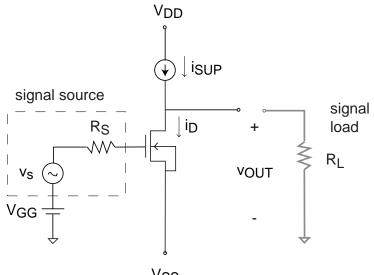
OTHER AMPLIFIER STAGES

November 17, 2005

Contents:

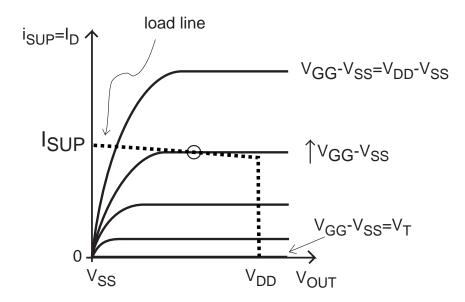
- 1. Common-source amplifier (cont.)
- 2. Common-drain amplifier
- 3. Common-gate amplifier

Reading assignment:


Howe and Sodini, Ch. 8, §§8.7-8.9

Key questions

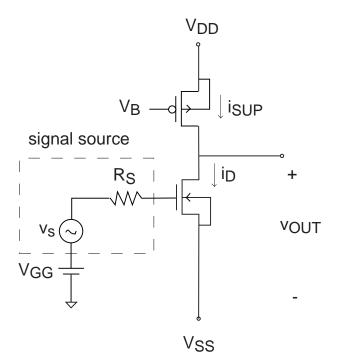
- What other amplifier stages can one build with a single MOSFET and a current source?
- What is the uniqueness of these other stages?


Lecture 20-3

1. Common-source amplifier with current-source supply

Vss

Loadline view:


Current source characterized by high output resistance: r_{oc} .

Then, unloaded voltage gain of common-source stage:

$$|A_{vo}| = g_m(r_o//r_{oc})$$

significantly higher than amplifier with resistive supply.

Can implement current source supply by means of pchannel MOSFET:

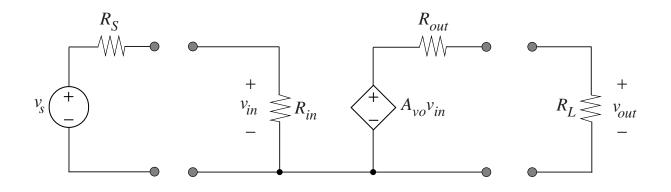
• Relationship between circuit figures of merit and device parameters

Remember:

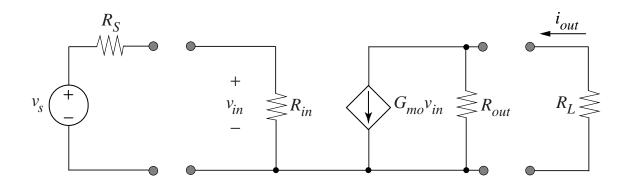
$$g_m = \sqrt{2\frac{W}{L}\mu_n C_{ox}I_D}$$

$$1 \qquad L$$

$$r_o \simeq \frac{1}{\lambda_n I_D} \propto \frac{L}{I_D}$$

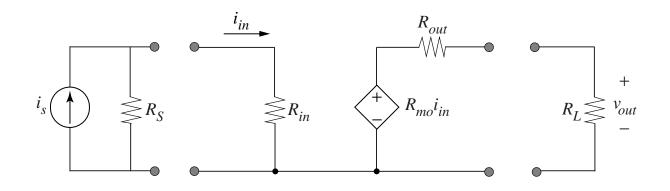

Then:

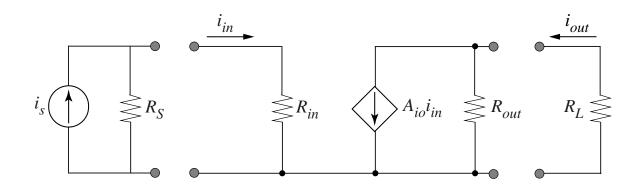
	Circuit Parameters			
Device *	$ A_{vo} $	R_{in}	Rout	
Parameters	$g_m(r_o//r_{oc})$	∞	$r_o//r_{oc}$	
I_{SUP} \uparrow	\downarrow	_	\downarrow	
$W\uparrow$	\uparrow	_	-	
$\mu_n C_{ox} \uparrow$	\uparrow	-	_	
$L\uparrow$	\uparrow	_	\uparrow	


* adjustments are made to V_{GG} so none of the other parameters change

CS amp with current supply source is good voltage amplifier $(R_{in} \text{ high and } |A_v| \text{ high})$, but R_{out} high too \Rightarrow voltage gain degraded if $R_L \ll r_o//r_{oc}$.

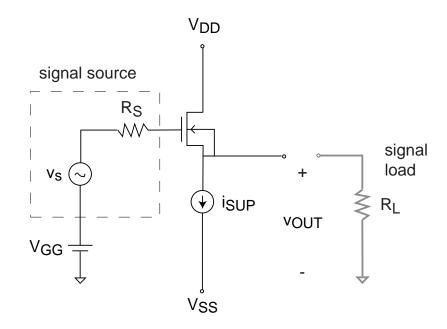
Common-source amplifier is acceptable *voltage* amplifier (want high R_{in} , high A_{vo} , low R_{out}):


... but excellent transconductance amplifier (want high R_{in} , high G_{mo} , high R_{out}):


For common-source amplifier:

$$G_{mo} = g_m$$

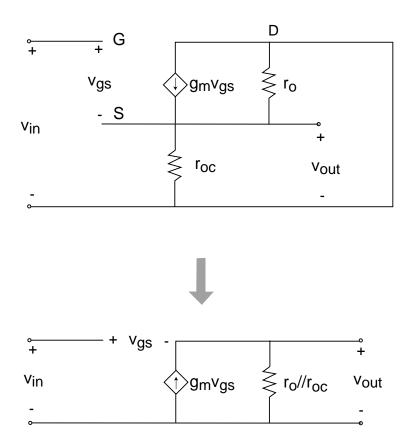
Common-source amplifier does not work as *transresistance* amplifier (want low R_{in} , high R_{mo} , low R_{out}):



nor as *current* amplifier (want low R_{in} , high A_{io} , high R_{out}):

Need new amplifier configurations.

2. Common-drain amplifier



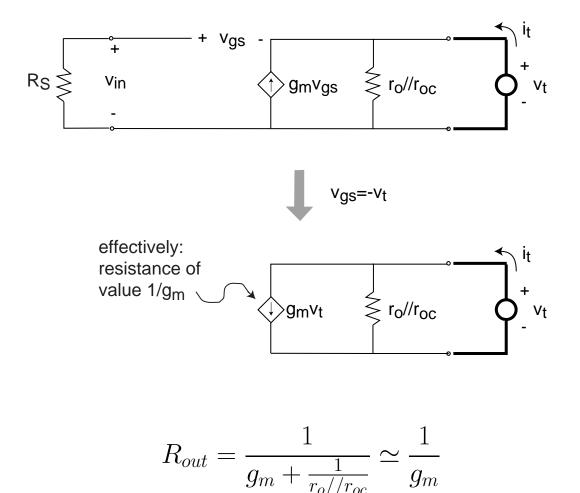
How does it work?

- V_{GG} , I_{SUP} , and W/L selected to bias MOSFET in saturation, obtain desired output bias point, and desired output swing.
- $v_G \uparrow \Rightarrow i_D$ can't change $\Rightarrow v_{OUT} \uparrow$ (source follower)
- to first order, no voltage gain: $v_{out} \simeq v_s$
- but R_{out} small: effective voltage buffer stage (good for making voltage amp in combination with common-source stage).

\Box Small-signal analysis

Unloaded small-signal equivalent circuit model:

 $v_{in} = v_{gs} + v_{out}$

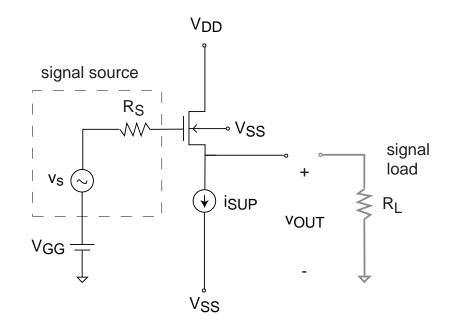

$$v_{out} = g_m v_{gs}(r_o//r_{oc})$$

Then:

$$A_{vo} = \frac{g_m}{g_m + \frac{1}{r_o//r_{oc}}} \simeq 1$$

Input impedance: $R_{in} = \infty$

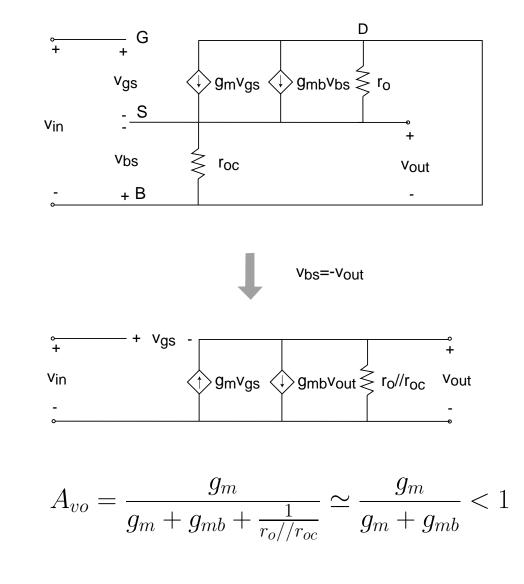
Output impedance:


small!

Loaded voltage gain:

$$A_v = A_{vo} \frac{R_L}{R_L + R_{out}} \simeq \frac{R_L}{R_L + \frac{1}{g_m}} \simeq 1$$

 \Box Effect of back bias:


If MOSFET not fabricated on isolated p-well, then body is tied up to wafer substrate (connected to V_{SS}):

Two consequences:

- Bias affected: V_T depends on $V_{BS} = V_{SS} V_{OUT} \neq 0$
- Small-signal figures of merit affected: signal shows up between B and S $(v_{bs} = -v_{out})$.

Small-signal equivalent circuit model:

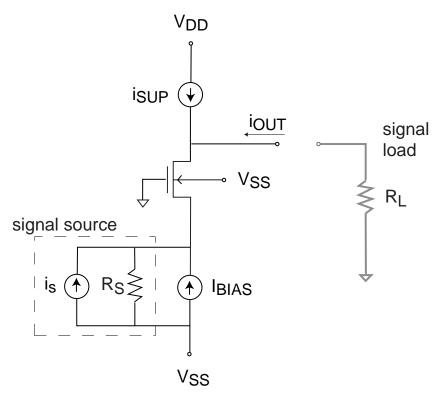
Also:

$$R_{out} = \frac{1}{g_m + g_{mb} + \frac{1}{r_o//r_{oc}}} \simeq \frac{1}{g_m + g_{mb}}$$

 \square Relationship between circuit figures of merit and device parameters:

$$g_m = \sqrt{2\frac{W}{L}\mu_n C_{ox}I_D}$$

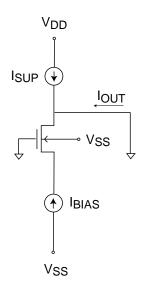
$$g_{mb} = \frac{\gamma}{2\sqrt{-2\phi_p - V_{BS}}} g_m$$


	Circuit Parameters			
Device *	$ A_{vo} $	R_{in}	Rout	
Parameters	$\frac{g_m}{g_m + g_{mb}}$	∞	$\frac{1}{g_m + g_{mb}}$	
I_{SUP} \uparrow	-	_	\downarrow	
$W\uparrow$	-	_	\downarrow	
$\mu_n C_{ox} \uparrow$	-	_	\downarrow	
$L\uparrow$	-	_	\uparrow	

* adjustments are made to V_{GG} so none of the other parameters change

CD amp useful as a *voltage buffer* to drive small loads (in a multistage amp, other stages will be used to provide voltage gain).

3. Common-gate amplifier


Need to handle current-mode signal sources:

How does it work?

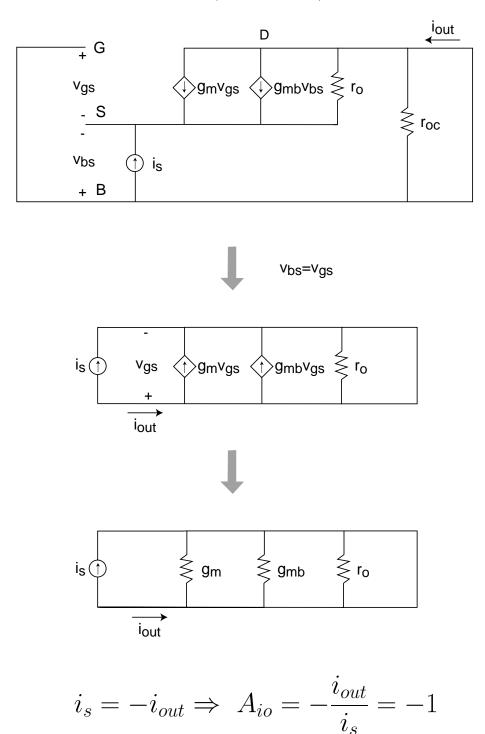
- since source is signal input terminal, body cannot be tied up to source $(C_{db}$ is significant)
- i_{SUP} , I_{BIAS} , and W/L selected to bias MOSFET in saturation, obtain desired output bias point, and desired output swing
- $i_S \uparrow \Rightarrow i_D \downarrow \Rightarrow i_{OUT} \downarrow$
- no current gain: $i_s = -i_{out} (current \ buffer)$

 \square Bias: select I_{SUP} , I_{BIAS} , and W/L to get proper quiescent I_{OUT} and keep MOSFET in saturation.

 $I_{SUP} + I_{OUT} + I_{BIAS} = 0$

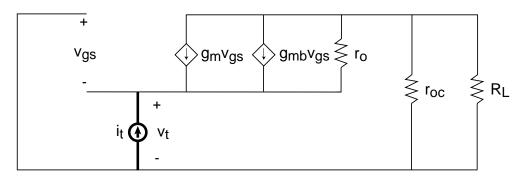
Select bias so that $I_{OUT} = 0 \implies V_{OUT} = 0$.

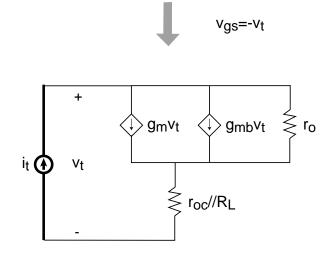
Assume MOSFET in saturation (no channel modulation):


$$I_D = \frac{W}{2L} \mu_n C_{ox} (V_{GS} - V_T)^2 = I_{SUP} = -I_{BIAS}$$

but V_T depends on V_{BS} :

$$V_T = V_{To} + \gamma_n (\sqrt{-2\phi_p - V_{BS}} - \sqrt{-2\phi_p})$$

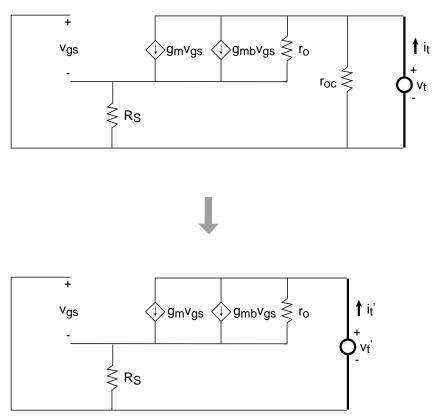

Must solve these two equations iteratively to get V_S .


\Box Small-signal circuit (unloaded)

Not surprising, since in a MOSFET: $i_g = 0$.

Input resistance:

Do KCL on input node:


$$i_t - g_m v_t - g_{mb} v_t - \frac{v_t - (r_{oc} / / R_L) i_t}{r_o} = 0$$

Then:

$$R_{in} = \frac{1 + \frac{r_{oc}//R_L}{r_o}}{g_m + g_{mb} + \frac{1}{r_o}} \simeq \frac{1}{g_m + g_{mb}}$$

Very small.

Output resistance:

Do KCL on input node:

$$i'_t - g_m v_{gs} - g_{mb} v_{gs} - \frac{v'_t + v_{gs}}{r_o} = 0$$

Notice also:

$$v_{gs} = -i'_t R_S$$

Then:

$$R_{out} = r_{oc} / \left\{ r_o [1 + R_S (g_m + g_{mb} + \frac{1}{r_o})] \right\} \simeq r_{oc} / \left[r_o (1 + g_m R_S) \right]$$

Very large, because of the feedback effect of R_S .

stage	A_{vo}, G_{mo}, A_{io}	R_{in}	R_{out}	key function
common source	$G_{mo} = g_m$	∞	$r_o//r_{oc}$	transconductance amp.
common drain	$A_{vo} \simeq \frac{g_m}{g_m + g_{mb}}$	∞	$rac{1}{g_m+g_{mb}}$	voltage buffer
common gate	$A_{io} \simeq -1$	$\frac{1}{g_m + g_{mb}}$	$r_{oc}//[r_o(1+g_m R_S)]$	current buffer

Summary of MOSFET amplifier stages:

In order to design amplifiers with suitable performance, need to combine these stages \Rightarrow multistage amplifiers

Key conclusions

Different MOSFET stages designed to accomplish different goals:

- Common-source stage:
 - large voltage gain and transconductance, high input resistance, large output resistance
 - excellent transconductance amplifier, reasonable voltage amplifier
- Common-drain stage:
 - no voltage gain, but high input resistance and low output resistance
 - good voltage buffer
- Common-gate stage:
 - no current gain, but low input resistance and high output resistance
 - good current buffer