MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

Problem Set No. 1

Issued: September 11, 2009

Due: September 16, 2009

Reading Assignments:

Lecture 1	(9/10/09)	- Chap. 1 (all), Chap. 2 (all), Chap.3 (3.1)
Lecture 2	(9/15/09)	- Chap. 3 (all), Chap. 4 (4.1)
Lecture 3	(9/17/09)	- Chap. 4 (4.2, 4.3), Chap. 6 (all)

<u>Problem 1</u> - This problem concerns the following three samples of silicon, each of which has a different doping level:

Sample a: 10^{17} cm⁻³ arsenicSample b: 10^{16} cm⁻³ boron, 5 x 10^{15} cm⁻³ phosphorousSample c: intrinsic (no dopants)

Complete a table like that shown below for these three samples. Assume that at room temperature the electron mobility, μ_{e} , is 1600 cm²/V-s, the hole mobility, μ_{h} , is 600 cm²/V-s, and the intrinsic carrier concentration, n_{i} , is 10¹⁰ cm⁻³.

Sample	Type (n or p)	$n_{o} [cm^{-3}]$	p _o [cm ⁻³]	Resistivity, $\rho_o [\Omega-cm]$
а				
b				
С				

- <u>Problem 2</u> [A one-dimensional electrostatics problem] Consider a situation in which there is a net charge density profile, $\rho(x,y,z)$, that varies in the x-direction only, i.e. $\rho(x,y,z) = \rho(x)$. There is a negative sheet charge density, $-Q \operatorname{coul/cm^2}$, at $x = -50 \operatorname{nm}$, and a uniform positive charge density of 1.6 x $10^{-2} \operatorname{coul/cm^3}$ between 0 and 300 nm. The dielectric constant is $3.5 \times 10^{-9} \operatorname{coul/V-cm}$ for $x \le 0$, and it is $10^{-10} \operatorname{coul/V-cm}$ for x > 0.
 - a) Sketch and label $\rho(x)$. The sheet charge density should be represented as an impulse at x = -10 nm with an intensity –Q. Assuming the electric field is zero for x < -50 nm, and x > 300 nm, what is the strength, Q, of the negative sheet charge at x = -50 nm?
 - b) Sketch and label the electric field, E(x), for -100 nm $\le x \le 500$ nm. Where does the electric field have its maximum intensity, $|E(x)|_{max}$, and what is $|E(x)|_{max}$?
 - c) Sketch and label the electrostatic potential, $\phi(x)$, for -100 nm $\leq x \leq 500$ nm, and give an algebraic expression for $\phi(x)$ valid in the region $0 \leq x \leq 500$ nm. Assume $\phi = 0.5$ V

at x = 500 nm. What is the change in potential, $\Delta \phi$, between x = -100 nm and x = 500 nm?

- d) Finally consider how $\rho(x)$, E(x), and $\phi(x)$ change if the extent of the uniform charge density is reduced and it now only extends from x = 0 to x = 200 nm.
 - i) Is Q larger or smaller, and by how much?
 - ii) Is $|E(x)|_{max}$ larger or smaller, and by how much?
 - iii) Is $\Delta \phi$ larger or smaller?
- <u>Problem 3</u> A p-type sample of silicon has a resistivity of 5 Ω-cm. In this sample, the hole mobility, $\mu_{\rm h}$, is 600 cm²/V-s and the electron mobility, $\mu_{\rm e'}$ is 1600 cm²/V-s. Ohmic contacts are formed on the ends of the sample and a uniform electric field is imposed which results in a drift current density in the sample is 2 x 10³ A/cm².
 - a) What are the hole and electron concentrations in this sample?
 - b) What are the hole and electron drift velocities under these conditions?
 - c) What is the magnitude of the electric field?
- <u>Problem 4</u> This problem concerns a sample of Semiconductor X. At room temperature in Semiconductor X, the intrinsic carrier concentration, n_i , is 10^7 cm^{-3} , the hole mobility, $\mu_{h\nu}$ is $300 \text{ cm}^2/\text{V-s}$, and the electron mobility, $\mu_{e\nu}$ is $4000 \text{ cm}^2/\text{V-s}$. The minority carrier lifetime, $\tau_{min\nu}$ is 10^{-9} s.

This sample is known to have 2 x 10^{16} cm⁻³ donors and an unknown number of acceptors. A measurement is made on the sample and it is found to be p-type with an equilibrium hole concentration, p_{ov} of 5×10^{17} cm⁻³.

- a) What is the net acceptor concentration, $N_A (= N_a N_d)$, in this sample, and what is the total acceptor concentration, N_a ?
- b) What is the equilibrium electron concentration, n_o, in this sample at room temperature?
- c) What is the electrical conductivity, σ_{o} , of this sample in thermal equilibrium at room temperature?
- d) This sample is illuminated by a steady state light which generates hole-electron pairs uniformly throughout its bulk, and the conductivity of the sample is found to increase by 1% (that is, to 1.01 σ_0). What are the excess hole and electron concentrations, p' and n', in the illuminated sample, assuming that the illumination has been on for a long time?
- f) What is the optical generation rate, G_L , in Part d?
- g) If the illumination in Part d is extinguished at t = 0, write an expression for the sample conductivity as a function of time for t > 0. Express your answer in terms of σ_0 , rather than the numerical value.

6.012 Microelectronic Devices and Circuits Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.