MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

Problem Set No. 4

Issued: September 30, 2009

Due: Monday, October 5, 2009 by 5 pm

Reading Assignments:

Lecture 7	(10/1/09)	- Chap. 8 (8.1)
Lecture 8	(10/6/09	- Chap. 7 (7.5, 7.6)
Lecture 9	(10/8/09)	- Chap. 9 (9.1, 9.2)

Exam 1: The first hour exam is scheduled for Wednesday night, October 7, from 7:30 to 9:30 pm Pleaselet me know as soon as possible (by e-mail) if you have a conflict so we can resolve it as painlessly as possible. The exam is closed book and will cover the material through 10/2/09 and Problem Set #4 (i.e. through p-n junction diodes and BJT basics). A formula sheet will be provided (see below); you can also bring one two-sided 8.5 x 11 crib sheet (and a magnifying glass if necessary). Old exams and solutions will be posted on Stellar soon.

- **Formula Sheet:** A draft copy of the formula sheet has been posted on Stellar. Suggestions for additions, corrections, and/or deletions are welcome.
- <u>Problem 1</u> The p- and n-sides of the silicon p-n diode shown above are each 2 μ m wide; the depletion regions on either side of the junction are both much narrower than this and their widths can be neglected relative to 2 μ m; also, L_{min} >> 2 μ m. The n-side has a net donor concentration, N_{Dn}, of 10¹⁶ cm⁻³. The hole and electron mobilities, μ_h and $\mu_{e'}$ are 600 cm²/V-s and 1600 cm²/V-s, respectively, throughout the device. (Ignore any dependence of the mobilities on doping level.) The cross-sectional area is 10⁻⁴ cm².

a) When the bias voltage, V_{AB} , is 0.48 V, what are the following quantities?

- i) The <u>total</u> hole population at the contact on the right end of the device, w_n
- ii) The <u>total</u> hole population at the edge of the depletion region on the n-side, x_n .

- iii) The <u>excess</u> hole charge stored in the quasi neutral region, QNR, on the n-side of the diode, $q_{QNR,n-side}$.
- iv) The net hole current density crossing the junction, $J_{h}(0)$.

b) You are not told explicitly the doping level of the p-side of this diode, N_{Ap} , but you are told that the <u>total</u> minority carrier (electron) population at the edge of the depletion region on the p-side, $n(-x_p)$ is one tenth that of the <u>total</u> minority carrier (hole) population at x_{n} , $p(x_n)$, when the applied voltage, V_{AB} , is 0.48 V, that is $p(x_n)/n(-x_p) = 10$.

- i) What must the net acceptor concentration on the p-side, N_{Ap} , be?
- ii) What is the magnitude of the ratio of the excess electron charge, $q_{QNR,p-side'}$ stored on the p-side of this diode to the excess hole charge, $q_{QNR, n-side'}$ stored on the n-side at this bias?
- iii) What is the ratio of the net electron current density crossing the junction, $J_e(0)$, to the net hole current density, $J_h(0)$, at this bias point?
- iv) What is the total potential step going from the quasi-neutral region on the p-side to the quasi-neutral region on the n-side of the <u>biased</u> junction?

<u>Problem 2</u> - This question concerns the silicon sample illustrated below which has three uniformly doped regions: Regions 1 and 3 are p-type, and Region 2 is n-type. There are ohmic contacts on either end of the sample, and there is a contact to Region 2 off to the side (much as it is in a bipolar junction transistor). Throughout the sample the electron diffusion coefficient, $D_{e'}$ is 40 cm²/s, the hole diffusion coefficient, $D_{h'}$ is $15 \text{ cm}^2/\text{s}$, and $\tau_{min} \approx \infty$. The cross-sectional area is 10^{-4} cm^2 .

When Terminal 2 is grounded and bias voltages, V_{12} and V_{32} , are applied to this device, the excess minority carrier profiles shown at the top of the next page result in Regions 2 and 3. (You have to figure out what happens in Region 1 yourself.)

You can ignore the widths of the depletion regions for purposes of working this problem.

- (a) Looking at Junction B:
 - (i) What is J_{Electron-B}, the <u>electron</u> current density crossing Junction B? Recall that this is the minority carrier diffusion current density in Region 3.
 - (ii) What is $J_{Hole-B'}$ the <u>hole</u> current density crossing Junction B?
 - (iii) What is the terminal current I_3 ?
 - (iv) What is N_{A3} , the doping level in Region 3?
- (b) Looking at Junction A:
 - (i) What is $n'(2^{-})$, the excess electron concentration at the edge of the quasineutral region on the p-side of this junction, i.e. just to the left of the edge of the depletion region at $x = 2^{-?}$
 - (ii) What is V_{12} , the voltage bias on Junction A?
- (c) Looking now at the entire sample, removing the biases V_{12} and V_{32} , and thinking of the structure as a bipolar junction transistor:
 - (i) What is the best terminal to use as the emitter, and why?
 - (ii) For your choice of emitter above, what is the forward current gain, β_{F} , of this transistor?
- <u>Problem 3</u> You are given a silicon npn bipolar transistor with the following parameters:

$$\begin{split} W_{\text{E}} &= 0.25 \; \mu\text{m}, \qquad W_{\text{B}} = 0.5 \; \mu\text{m} \qquad W_{\text{C}} = 1.0 \; \mu\text{m} \\ \text{Active device cross-sectional areas:} \quad A_{\text{E}} &= A_{\text{C}} = 10^{-4} \; \text{cm}^2 \\ D_{\text{h}} &= 10 \; \text{cm}^2/\text{s}, \qquad D_{\text{e}} = 20 \; \text{cm}^2/\text{s} \\ \text{Minority carrier lifetime, } \tau_{\text{min}} &= \infty \qquad (\text{recombination only at contacts}) \\ \text{Collector doping, } N_{\text{DC}} &= 5 \; x \; 10^{16} \; \text{cm}^{-3} \\ V_{\text{A}} &= 100 \; \text{V} \end{split}$$

A plot of log i_C and log i_B vs v_{BE} for this device is shown at the top of the next page. Such a plot is called a Gummel Plot, after the researcher who first realized that it was a useful tool for measuring β_F for BJTs and seeing if and how it varies with v_{BE} :

- a) What is the forward current gain, β_{F} , in this transistor?
- b) What is the base defect, δ_{B} , in this transistor? (Hint: No calculation necessary.)
- c) Calculate the ratio, r, defined as $r = (w_{E,eff} \cdot N_{DE})/(w_{B,eff} \cdot N_{AB})$.
- d) Calculate the net acceptor concentration in the base, N_{AB} . (Hint: Do not use your answer in Part c.)
- e) Calculate the net donor concentration in the emitter, N_{DE} .
- f) Plot the <u>excess</u> minority carrier profiles between $x = -w_E$ and $x = w_B + w_C$ for the bias condition $V_{BE} = 0.7 \text{ V}$, $V_{BC} = -1 \text{ V}$. Label the numerical values of the excess minority carrier concentrations at the edges of the depletion regions at x = 0 and $x = w_B$, and at the contacts. (Note: Neglect the depletion region widths relative to the emitter, base, and collector widths.)
- g) Consider the total number of <u>excess</u> minority carriers in the base of this transistor, $Q_{B,diff}$, under each of the following two bias conditions,

Bias A:	$V_{\text{BE}}=0.7~V$	$V_{BC} = -1 V$
Bias B:	$V_{\scriptscriptstyle BE}=0.7~V$	$V_{\text{BC}}=0.7~V$

What is the ratio of the $Q_{B,diff}$'s under the two bias conditions? (Suggestion: Try sketching n'(x) for $0 < x < w_B$ for each of these biases.)

6.012 Microelectronic Devices and Circuits Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.