MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

Problem Set No. 10

Issued: November 13, 2009

Due: November 20, 2009

Design Problem: The design problem will be distributed on Wednesday, November 18. Your solution will be due on Friday, December 4 by 5 p.m. Note that you should neglect the Early effect when doing your large signal analyses, but you must include it (g_o) in your LEC analyses.

<u>Reading Assignments</u>:

Lecture 19 (11/17/09) - Chap. 12 (12.1, 12.2, 12.3) Lecture 20 (11/19/09) - Chap. 12 (12.4, 12.5), Chap. 13 Lecture 21 (11/24/09) - Chap. 13, Notes

<u>**Problem 1**</u> – The Lee Load, which will be used in the first stage of the design problem, can be modeled by the two terminal circuit shown below containing a voltage dependent voltage source whose value is different for difference- or common-mode inputs to the associated differential stage. Consequently the LEC for the load is different for difference- and common-mode analysis.

The two n-MOS transistors in this circuit are identical with the same dimensions and values of K, V_T , and λ . Assume that $V_{AB} > V_T$ so both transistors are active (and operating in saturation).

- a) Find the linear equivalent conductance of this circuit when A = -1. This is $g_{oLL,dm'}$ the equivalent conductance of the Lee Load in a difference mode half circuit (i.e., $1/r_{oLL,dm}$ in the upper half circuit on Slide 23 of Lecture 20).
- b) Find the linear equivalent conductance of this circuit when A = +1. This is $g_{oLL,cm\nu}$ the equivalent conductance of the Lee Load in a common mode half circuit (i.e., $1/r_{oLL,cm}$ in the lower half circuit on Slide 23 of Lecture 20).
- Use your results in Parts a and b to find expressions for A_{vd} and A_{vc} of the first stage of the design problem circuit in terms of g_{m4} , $g_{m8'}$, $g_{o4'}$, $g_{o8'}$, and g_{o10} . Then write your expressions in terms of the K's, V_A 's, I_D 's, and V_{GS} 's. Eliminate I_D from your expressions and then calculate the maximum possible value of $|A_{vd}|$ and of $|A_{vd}| / |A_{vc}|$.

Problem 2 - Consider the two-stage amplifier with a common-source first stage and a common-gate second stage shown on the right below.

Use the two-port models for the common-source and common-gate stages (shown below) to compare the voltage gain and output resistance of this two-stage amplifier to the single common-source amplifier shown above on the left.

You can find expressions for the elements in each of these two-port models on the foils for Lecture 18. Note that the substrate of the transistor in the common gate stage has been connected to the source so the g_{mb} factor should be deleted from the expressions also assume that the stage load conductance, $g_{s\nu}$ is negligibly small so you can say it is zero (so, for example, R_{in} is simply $1/g_{m\nu}$, and the current gain is identically one).

- a) Calculate the voltage gain, v_{out}/v_{in} , of the two-stage amplifier and compare it to that of the single common-source stage.
- b) Calculate the output resistance, R_o, of the two-stage amplifier and compare it to that of the single common-source stage.
- **Problem 3** The circuit shown at the top of the next page contains n-channel and p-channel MOSFETs all of which have the same gate length, $L = L_{min}$; all the gate widths, however, are not equal, but they are all <u>integer multiples</u> of W_{min} . All have an Early voltage, V_A , of 10 V; the magnitude of all of their threshold voltages, V_T , is 0.5 V; and all must be biased with $|V_{GS} V_T| \ge 0.1 \text{ V}$.

The K-factor of an n-channel MOSFET with $L = L_{min}$ and $W = W_{min}$ is 250 μ A/V², and the K-factor of a p-channel MOSFET with $L = L_{min}$ and $W = W_{min}$ is 125 μ A/V².

The drain current of Q_8 is known to be 10 μ A, and W_7 , the width of Q_7 , is known to be W_{min} . The resistor R_1 has been selected so that Q_1 and Q_7 are biased with $|V_{GS} - V_T| = 0.1 \text{ V}$. The widths of Q_2 , Q_3 , Q_4 , and Q_5 have been chosen so that for each of them $|V_{GS} - V_T| = 0.1 \text{ V}$ when $v_{IN1} = v_{IN2} = 0$.

For Parts a), b), c) and d) <u>connect Node B to Node A</u>.

- a) This part concerns the bias chain Q_1 , R_1 , and Q_7 .
 - i) What is I_{D7} , the drain current of Q_7 , and that is W_1 , the width of Q_1 ?
 - ii) What is the value of the resistor R₁?
- b) What is the most negative common mode voltage, v_{IC}, that can be applied to the input terminals before one or more transistors in the amplifier are forced out of saturation? Remember that Node B is connected to Node A
- c) What is the small signal output, v_{outr} with the following difference-mode inputs: $v_{in1} = v_a$ and $v_{in2} = -v_a$? Give your answer in three forms: (i) an expression in terms of the g_m 's and g_o 's of the relevant transistors, (ii) an expression in terms of the bias points of the relevant transistors, and (iii) a numerical value. <u>Assume</u> the voltage gain of the source-follower output stage (Q_6) is 1. Remember: Node B is connected to Node A.
- d) Draw the linear equivalent half-circuits for this amplifier for the following <u>common-mode</u> inputs: $v_{in1} = v_{in2} = v_{ic}$. Label your drawings in terms of the g_m 's and g_o 's of the relevant transistors. You <u>do not</u> need to find numerical values for the elements. Recall that Node B is connected to Node A.
- e) How will your answers in Part c) change if <u>Node B is connected to Node C</u>, instead of to Node A? State the change <u>and</u> give the name of this circuit topology, i.e., of this connection.

For the rest of this problem leave Node B connected to Node C.

- f) Size Q_6 and Q_9 so that the output resistance of this amplifier is 1000 Ohms AND so that the quiescent output voltage (v_{OUT} with $v_{IN1} = v_{IN2} = 0$) is 0. The widths should be <u>integer multiples</u> of W_{min} .
- g) For your design in Part f, what is the most <u>negative</u> value v_{OUT} can have if the output is attached to a 1 kOhm load resistor? Hint: This occurs when v_{GS6} gets so small that Q_6 cuts off and all of the drain current of Q_9 (the current sink) is drawn from ground through the 1 kOhm load resistor.
- h) For your design in Part f, what is the most <u>positive</u> value v_{OUT} can have if the output is attached to a 1 kOhm load resistor? This occurs when the voltage on the gate of Q_6 is so high that Q_3 is pushed out of saturation because v_{SD3} becomes too small. What is v_{GS3} at this maximum value of v_{OUT} ?
- Note: Parts g and h should show you why a push-pull output stage is used in the design problem circuit.
- **Problem 4** Consider the differential amplifier circuit illustrated below. In this circuit the three n-channel MOSFETs are identical; they have a threshold voltage, $V_{T'}$ of 1 V, a drain current in saturation of $2.5(v_{GS} V_T)^2$ mA, and an Early voltage of 10 V. The MOSFETS should be operated with $(v_{GS} V_T) \ge 0.2$ V. The npn bipolar junction transistors (BJTs) all have forward betas, β_F , of 100 and an Early voltage of 50 V. The BJT sizes have been adjusted to that to a good approximation you may use $V_{BE,ON} = 0.6$ V; $V_{CE,SAT} = 0.2$ V. Assume C_S is a short at mid-band frequencies, and R₂ and R₃ are identical.

<u>Note</u> that value of the resistor R_4 , the quiescent collector current on Q_4 , and minimum quiescent voltage on the gate of Q_3 are indicated on the schematic, as are the supply voltages.

- a) What must the bias level (I_{Bias}) on Q₃ be to have a quiescent output voltage of approximately 0 V? (Assume that the quiescent collector current of Q₄ is 2 mA, as indicated, and do not forget its base current.)
- b) Select R₅ be to be consistent with a quiescent collector current in Q₄ of 2 mA, and a quiescent output voltage of approximately 0 V.
- c) Select R_1 to give a bias current through Q_5 of 1 mA. You may ignor the base currents of Q_5 , Q_6 , and Q_7 .
- d) i) Draw a small signal linear equivalent <u>half</u> circuit one could use to calculate the signal voltage on the gate of Q₃ due to the difference-mode input signal, v_{in1} v_{in2}. Find an expression for this voltage in terms of incremental linear equivalent circuit model parameters.
 - ii) Write an expression for the differential-mode voltage gain of the differential stage (Q_1, Q_2) in terms of the resistors, the MOSFET K-factors, and the quiescent bias levels of Q_1 and Q_2 . Select R_2 (= R_3) and the drain current of Q_1 and Q_2 to maximize this voltage gain (magnitude).
- e) Suppose you can replace R_2 and R_3 with a current mirror made with p-channel MOSFETs with $|V_T| = 1$ V and $|V_A| = 20$ V. Draw the schematic of such a current mirror, and calculate what impact this would have on the voltage gain.
- f) Looking at the output stage, what are the most positive and negative values of v_{out} possible? Explain your answers.

6.012 Microelectronic Devices and Circuits Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.