
       

 
  

    
       

      
       

           

       
     
   

   

     
         

   
    

  

     
 

6.012 - Microelectronic Devices and Circuits
 

Lecture 10 - MOS Caps II; 

p-Si

n+

B

S
G

SiO2+
–

vGS

(= vGB)

MOSFETs 
c	 

* 

I - Outline 

• Review - MOS Capacitor 
The "Delta-Depletion Approximation" 

(n-MOS example) 

Flat-band voltage: VFB ≡ vGB such
 
that φ(0) = φp-Si: VFB  = φp-Si – φm
 

Threshold voltage: VT ≡ vGB such
 
that φ(0) = – φp-Si: VT = VFB  – 2φp-Si + [2εSi qNA|2φp-Si| ]1/2/Cox
 

Inversion layer sheet charge density: qN
* = – Cox 

*[vGC – VT]
 

• Charge stores - qG(vGB) from below VFB to above VT 
Gate Charge: qG(vGB) from  below VFB to above VT
 

Gate Capacitance: Cgb(VGB)
 
Sub-threshold charge: qN(vGB) below VT
 

• 3-Terminal MOS Capacitors - Bias between B and C 
Impact is on VT(vBC): |2φp-Si| → (|2φp-Si| - vBC) 

• MOS Field Effect Transistors - Basics of model 
Gradual Channel Model:	 electrostatics problem normal to channel 

drift problem in the plane of the channel 
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The n-MOS
 
capacitor
 

Right: 	Basic device 
with vBC = 0 

p-Si

n+

B

S
G

SiO2+
–

vGS

(= vGB)
C 

Below: One-dimensional structure for depletion approximation analysis*
 

Clif Fonstad, 10/15/09 Lecture 10 - Slide 2 

BG

+ –
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x
-tox 0

vGB

* Note: We can't forget the n+ region is there; we 
will need electrons, and they will come from there. 



       

        
  

    
         

           
         

          
       

   

  

            
          

MOS Capacitors: Where do the electrons in the inversion 
layer come from? 

Diffusion from the p-type substrate? 
If we relied on diffusion of minority carrier electrons from 

the p-type substrate it would take a long time to build up 
the inversion layer charge. The current density of elec-
trons flowing to the interface is just the current across a 
reverse biased junction (the p-substrate to the inversion 
layer in this case): 

! 

Je = qni

2 De

NAwp,eff

    [Coul/cm
2

- s]

The time, τ, it takes this flux to build up an inversion charge
 

so τ is 

! 

"qN

* =
#ox

tox

" vGB $VT( )
is the the increase in the charge, Δqn, divided by Je: 

! 

" =
#qN

*

Je

=
$oxNAwp,eff

qni

2
Detox

# vGB %VT( ) 
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Diffusion from the p-type substrate. cont.? 
Using NA = 1018 cm-3, tox = 3 nm, wp,eff = 10 µm, De = 40 cm2/V 

and Δ(vGB-VT) = 0.5 V in the preceding expression for τ we 
find τ ≈ 50 hr! 

Flow from the adjacent n+-region? 
As the surface potential is increased, the potential energy 

barrier between the adjacent n+ region and the region 
under the gate is reduced for electrons and they readily 
flow (diffuse in weak inversion, and drift and diffuse in 
strong inversion) into the channel; that's why the n+ 
region is put there: 

There are many electrons 
here and they don't have 
far to go once the barrier 
is lowered. 
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p-Si

n+

B
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–
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Electrostatic potential and net charge profiles - regions and boundaries 

φ
XDT 

p 

φ(x) 

-tox 
φ

φ(x) φ(x) 

φp 
φ

vGB 
-φ

|2φp |-tox vGB -tox xd xxx 
m m φm 

pφpvGB 
qNAXDT + 

xd ox ox 

ρ(x) 
ρ(x) qNAxd 

ρ(x) Cox 
*(vGB - VT) 

C

- C *(vGB - VFB) -t -tox XDT x-tox xx qD
* = -qNAXDT −qNA*(vGB - VFB)ox 

−qNA qD
* =  -qNAxdvGB qN

* = - Cox 
*(vGB - VT) 

Acccumulation Depletion (Weak Inversion) Strong Inversionwhen φ(0) > 0 
vGB < VFB VFB < vGB < VT VT < vGB 

vGB 

Flat Band Voltage Threshold Voltage
|qNA)1/2/C– φ VT = VFB+|2φ |+(2εSi|2φ * 

XDT 

VFB = φp m 

φ

p p ox 
φ(x) 

φm 
φ

φ(x) 

-φpvGB |2φ |p-tox -tox xx 
mvGB φp

p 
qNAXDT ρ(x) ρ(x) 

-tox -tox XDT xx 
−qNA qD

* = -qNAXDT 
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MOS Capacitors: the gate charge as vGB is varied
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vGB [V] 
VT 

VFB 

qG* [coul/cm2] 

qNAPXDT 

! 

qG

" = Cox

"
vGB #VT( )

             + qNAP XDT

Inversion 
Layer

Charge 

! 

qG

"
(vGB ) =

Cox

"
vGB #VFB( )   for       vGB $VFB

%SiqNA

Cox

"
1+

2Cox

"2
vGB #VFB( )
%SiqNA

#1

& 

' 
( 
( 

) 

* 
+ 
+   for    VFB $ vGB $VT

Cox

"
vGB #VT( ) + qNA XDT   for        VT $ vGB

, 

- 

. 

. 

/ 

. 

. 

The charge expressions: 

! 

qG

" =
#SiqNA

Cox

"
1+

2Cox

"2
vGB $VFB( )
#SiqNA

$1

% 

& 
' 
' 

( 

) 
* 
* 

Depletion
Region
Charge 

! 

qG

" = Cox

"
vGB #VFB( ) Accumulation 

Layer Charge 

! 

Cox

"
#
$ox

tox



       

         

  

 

MOS Capacitors: the small signal linear gate capacitance, Cgb(VGB) 

Cgb(VGB) [coul/V] 

! 

Cgb (VGB ) " A
#qG

$

#vGB vGB =VBG

C
Accumulation Inversion 

VGB [V] 
VTVFB 

ox 
Depletion 

G
This expression can also be written 

! 

Cgb (VGB ) = A
tox

"ox

+
xd (VGB )

"Si

# 

$ 
% 

& 

' 
( 

)1
εox Aε /t [= C ]ox ox oxas: 
εSi AεSi/xd(VGB) 
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! 

Cgb (VGB ) =

A Cox

"
  for       VGB #VFB

A Cox

"
1+

2Cox

"2
VGB $VFB( )
%SiqNA

  for    VFB #VGB #VT

A Cox

"
  for        VT #VGB

& 

' 
( 
( 

) 

( 
( 
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MOS Capacitors:	 How good is all this modeling? 
How can we know? 

Poisson's Equation in MOS 
As we argued when starting, Jh and Je are zero in steady 

state so the carrier populations are in equilibrium with 
the potential barriers, φ(x), as they are in thermal 
equilibrium, and we have: 

! 

n(x) = nie
q" (x ) kT

and p(x) = nie
#q" (x ) kT

Once again this means we can find φ(x), and then n(x) and 
p(x), by solving Poisson's equation: 

! 

d
2"(x)

dx
2

= #
q

$
ni e

#q" (x ) / kT # e
q" (x ) / kT( ) + Nd (x) # Na (x)[ ]

This version is only valid, however, when |φ(x)| ≤ -φp. 
When |φ(x)| > -φp we have accumulation and inversion layers, 

and we assume them to be infinitely thin sheets of charge, 
i.e. we model them as delta functions. 

Clif Fonstad, 10/15/09	 Lecture 10 - Slide 8 



       

     
    

          

  

  

 

    

Poisson's Equation calculation of gate charge 
Calculation compared with depletion approximation 

model for tox = 3 nm and NA = 1018 cm-3: 

tox,eff ≈ 3.2 nm 

We'll look in 
this vicinity 
next.t

Clif Fonstad, 10/15/09 Lecture 10 - Slide 9 
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ox,eff ≈ 3.3 nm 



       

   
     

        
          

          
       

           
      

         

            
            

      

MOS Capacitors:	 Sub-threshold charge
Assessing how much we are neglecting 

Sheet density of electrons below threshold in weak inversion: 
In the depletion approximation for the MOS we say that the 

charge due to the electrons is negligible before we reach 
threshold and the strong inversion layer builds up: 

! 

qN ( inversion )
vGB( ) = "Cox

*
vGB "VT( )

But how good an approximation is this? To see, we calculate
 
the electron charge below threshold (weak inversion): 

! 

qN (sub" threshold )
vGB( ) = " q nie

q# (x ) / kT
dx

xi vGB( )

0

$

This integral is difficult to do because φ(x) is non-linear
 

! 

"(x) = "p +
qNA

2#Si

x - xd( )2

but if we use a linear approximation for φ(x) near x = 0, 
where the term in the integral is largest, we can get a very 
good approximate analytical expression for the integral. 
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Sub-threshold electron charge, cont.
 
We begin by saying 

! 

"(x) # "(0) + ax   where   a $
d"(x)

dx x= 0

= %
2qNA "(0) %"p[ ]

&Si

where 

With this linear approximation to φ(x) we can do the integral 
and find 

! 

qN (sub" threshold )
vGB( ) # q

kT

q

n(0)

a
= " q

kT

q

$Si

2qNA %(0) "%p[ ]
nie

q% (0) kT

To proceed it is easiest to evaluate this expression for various 
values of φ(0) below threshold (when its value is |φp|), and to 
also find the corresponding value of vGB, from 

! 

vGB "VFB = #(0) "#p +
tox

$ox

2$SiqNA #(0) "#p[ ]
This has been done and is plotted along with the strong 
inversion layer charge above threshold on the following foil. 
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   Sub-threshold electron charge, cont.
 

6 mV 

Neglecting this charge results in a 6 mV error in the threshold 
voltage value, a very minor impact. We will see its impact on 
sub-threshold MOSFET operation in Lecture 12. 
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MOS Capacitors:	 A few more questions you might have

about our model
 

Why does the depletion stop growing above threshold? 
A positive voltage on the gate must be terminated on negative
charge in the semiconductor. Initially the only negative charges
are the ionized acceptors, but above threshold the electrons in the 
strong inversion layer are numerous enough to terminate all the
gate voltage in excess of VT.  The electrostatic potential at 0+ does
not increase further and the depletion region stops expanding. 

How wide are the accumulation and strong inversion layers? 
A parameter that puts a rough upper bound on this is the extrinsic 
Debye length 

! 

LeD " kT#Si q
2
N

When N is 1019 cm-3, LeD is 1.25 nm.  The figure on Foil 11 seems to 
say this is ~ 5x too large and that the number is nearer 0.3 nm.* 

Is n, p = nie±qV/kT valid in those layers? 
It holds in Si until |φ| ≈ 0.54 V, but when |φ| is larger than this Si 
becomes "degenerate" and the carrier concentration is so large
that the simple models we use are no longer sufficient and the
dependence on φ is more complex. Thinking of degenerate Si as 
a metal is far easier, and works extremely well for our purposes. 

Clif Fonstad, 10/15/09	 Lecture 10 - Slide 13 * Note that when N = 1020 cm-3, LeD ≈ 0.4 nm. 



       

 

 

Bias between n+ region and substrate, cont.
 
Reverse bias applied to substrate, I.e. vBC < 0 

vBC < 0 

p-Si

n+

B

C
G

SiO2+
– vGC

vBC 
+

–

Soon we will see how this will let us electronically adjust MOSFET
 
threshold voltages when it is convenient for us to do so.
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φ(x) With voltage between substrate 
and channel, vBC < 0 

Threshold: vGC = VT(vBC) with vBC < 0 
vGB = 
VT(vBC) 

|2φp| – vBC 

-tox XDT(vBC < 0) 
x 

φp 

ρ(x) qNAXDT 

XDT(vBC < 0) 
x-tox
 

−qNA
 

φm 

-φp 
XDT(vCB = 0) 

-φp – vBC 

VT(vBC) = VFB + |2φp| + [2εSi(|2φp|-vBC)qNA]1/2/Cox 
* 

{This is vGC at threshold} 

XDT(vBC < 0) = [2εSi(|2φp|-vBC)/qNA]1/2 

qN * = -qNAxDT 

qN 
* = -[2εSi(|2φp|-vBC)qNA]1/2 Clif Fonstad, 10/15/09 Lecture 10 - Slide 15 



       

        Bias between n+ region and substrate, cont. - what electrons see
 

The barrier confining the electrons to the source is lowered by the
voltage on the gate, until high level injection occurs at threshold. 
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Bias between n+ region and substrate, cont. - what electrons see
 

The barrier confining the electrons to the source is lowered by the
voltage on the gate, until high level injection occurs at threshold.

When the source-substrate junction is reverse biased, the barrier is
higher, and the gate voltage needed to reach threshold is larger. 
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An n-channel
 
MOSFET capacitor:
 
reviewing the results of the 

now allowing for vBC ≠ 0. 
depletion approximation, 

vBC < 0 

p-Si

n+

B

C
G

SiO2+
– vGC

vBC 
+

–

! 

Flat - band voltage :   VFB " vGB   at which    #(0) = #p$Si

                        VFB = #p$Si $ #m

Threshold voltage :   VT " vGC   at which    #(0) = $#p$Si + vBC

              VT (vBC ) = VFB $ 2#p$Si +
1

Cox

*
2%Si qNA 2#p$Si $ vBC[ ]{ }

1/ 2

Accumulation Depletion Inversion vCG 

! 

Inversion layer sheet charge density :      qN

* = "Cox

*
vGC "VT (vBC )[ ]

Accumulation layer sheet charge density :      qP

* = "Cox

*
vGB "VFB )[ ]

VFB VT0 
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An n-channel MOSFET
 

p-Si

B

G
+vGS

n+

D

n+

S
– vDS

vBS +

iG

iB

iD

Gradual Channel Approximation: There are two parts to the problem: 
the vertical electrostatics problem of relating the channel charge to the 
voltages, and the horizontal drift problem in the channel of relating the 
channel charge drift to the voltages. We will assume they can be worked 
independently and in sequence. 
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An n-channel MOSFET showing gradual channel axes
 

p-Si

B

G
+vGS

n+

D

n+

S
– vDS

vBS +

iG

iB

iD

L0
y

x
0

Extent into plane = W 

Gradual Channel Approximation:
 - We first solve a one-dimensional electrostatics problem in the x direction 

to find the channel charge, qN
*(y)

 - Then we solve a one-dimensional drift problem in the y direction to find 
the channel current, iD, as a function of vGS, vDS, and vBS. 
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We restrict voltages to the following ranges: 

! 

vBS " 0, vDS # 0

Gradual Channel Approximation i-v Modeling
(n-channel MOS used as the example) 

This means that the source-substrate and drain-substrate 
junctions are always reverse biased and thus that: 

! 

iB vGS ,vDS ,vBS( ) " 0

The gate oxide is insulating so we also have: 

! 

iG vGS ,vDS ,vBS( ) " 0

With the back current, iB, zero, and the gate current, iG, zero, 
the only current that is not trivial to model is iD. 

The drain current, iD, is also zero except when when vGS > VT. 

The in-plane problem: (for just a minute so we can see where we're going) 

Looking at electron drift in the channel we write iD as 

! 

iD = "W sey (y)qn

*
(y) = "W µe qn

*
(vGS ,vBS ,vCS (y))

dvcs

dy
   (at moderate E - fields)

This can be integrated from y = 0 to y = L, and vCS = 0 to vCS = 
vDS, to get iD(vGS, vDS,vBS), but first we need qn

*(y). 

Clif Fonstad, 10/15/09 Lecture 10 - Slide 21 (derivation continues on next foil) 



       

          

  
        

         
         

   

    

   

         
        

    

Gradual Channel Approximation, cont. 
We get qn

*(y) from the normal problem, which we do next. 

The normal problem: 
The channel charge at y is qn

*(y), which is: 

! 

qn

*
(y) = "Cox

*
vGC (y) "VT [vCS (y),vBS ]{ } = "Cox

*
vGS " vCS (y) "VT [vCS (y),vBS ]{ }        

with   VT [vCS (y),vBS ] = VFB " 2#p"Si + 2$SiqNA 2#p"Si " vBS + vCS (y)[ ]{ }
1/ 2

Cox

*

We can substitute this expression into the iD equation we
just had and integrate it, but the resulting expression is 
deemed too algebraically awkward: 

! 

iD (vDS ,vGS ,vBS ) =
W

L
µe Cox

*
vGS " 2#p "VFB "

vDS

2

$ 

% 
& 

' 

( 
) vDS +

3

2
2*SiqNA 2#p + vDS " vBS( )

3 / 2

" 2#p " vBS( )
3 / 2+ 

, - 
. 
/ 0 

1 
2 
3 

4 
5 
6 

A simpler, more common approach is to simply ignore the 

! 

VT [vCS (y),vBS ] "VT (vBS ) = VFB # 2$p#Si + 2%SiqNA 2$p#Si # vBS[ ]{ }
1/ 2

Cox

*

dependence of VT on vCS, and thus to say 

With this simplification we have: 

! 

qn

*
(y) " #Cox

*
vGS #VT (vBS ) # vCS (y)[ ] 
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Gradual Channel Approximation, cont. 

The drain current expression (the in-plane problem): 
Putting our approximate expression for the channel charge

into the drain current expression we obtained from 
considering the in-plane problem, we find: 

! 

iD = "W µe qn

*
(vCS )

dvCS

dy
# W µe Cox

*
vGS "VT (vBS ) " vCS (y){ }

dvCS

dy

This expression can be integrated with respect to dy for 
y = 0 to y = L. On the left-hand the integral with respect 
to y can be converted to one with respect to vCS, which 
ranges from 0 at y = 0, to vDS at y = L: 

! 

iD
0

L

" dy = W µe Cox

*
vGS #VT (vBS ) #vCS (y){ }dvCS

0

vDS

"

Doing the definite integrals on each side we obtain a 
relatively simple expression for iD: 

! 

       iD L = W µe Cox

*
vGS "VT (vBS ) "

vDS

2

# 
$ 
% 

& 
' 
( 

vDS
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   Gradual Channel Approximation, cont. 

The drain current expression, cont: 
Isolating the drain current, we have, finally: 

! 

       iD (vGS ,vDS ,vBS ) =
W

L
µe Cox

*
vGS "VT (vBS ) "

vDS

2

# 

$ % 
& 

' ( 
vDS

Plotting this equation for increasing values of vGS we see 
that it traces inverted parabolas as shown below. 

Note,however, that iD saturates at its peak value for larger 
values of vDS (solid lines); it doesn't fall off (dashed lines). 

iD

vDS

inc.
vGS
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   Gradual Channel Approximation, cont. 

zero we find: 

The drain current expression, cont: 
The point at which iD reaches its peak value and saturates is 

easily found. Taking the derivative and setting it equal to 

! 

       
"iD

"vDS

= 0      when      vDS = vGS #VT (vBS )[ ]

What happens physically at this voltage is that the channel
 
(inversion) at the drain end of the channel disappears:
 

! 

qn

*
(L) " #Cox

*
vGS #VT (vBS ) #vDS{ }

          = 0     when    vDS = vGS #VT (vBS )[ ]

For vDS > [vGS-VT(vBS)], all the additional drain-to-source voltage 
appears across the high resistance region at the drain end of 
the channel where the mobile charge density is very small, 
and iD remains constant independent of vDS: 

! 

       iD (vGS ,vDS ,vBS ) =
1

2

W

L
µe Cox

*
vGS "VT (vBS )[ ] 2

   for     vDS > vGS "VT (vBS )[ ]
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   Gradual Channel Approximation, cont. 
The full model: Derived neglecting the
 

variation of the depletion layer charge with y.
 

! 

iD (vGS ,vDS ,vBS ) =

0 for vGS "VT (vBS )[ ] < 0 < vDS

1

2

W

L
µe Cox

*
vGS "VT (vBS )[ ]2

for 0 < vGS "VT (vBS )[ ] < vDS

W

L
µe Cox

*
vGS "VT (vBS ) "

vDS

2

# 
$ 
% 

& 
' 
( 

vDS for 0 < vDS < vGS "VT (vBS )[ ]

# 

$ 

) 
) ) 

% 

) 
) 
) 

G B

S

D

+

–

+

vGS
vBS

iD

iG iB

+

vDS

! 

iG (vGS ,vDS ,vBS ) = 0

! 

iB (vGS ,vDS ,vBS ) = 0

Cutoff 

Saturation 

Linear or 
Triode 

Linear or
 
Triode
 

iD

vDS

increasing 

vGS

Cutoff Region Lecture 10 - Slide 26 

Saturation or 
Region Forward Active 

Region 
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The operating regions of MOSFETs and BJTs:
 
Comparing an n-channel MOSFET and an npn BJT 

MOSFET 

G

S

D

+

–
–

+

vGS

vDS

iG

iD

i
B

vBE vCE

iC

0.6 V 0.2 V

Forward Active Region
FAR

CutoffCutoff

Saturation

iC ! !F iBvCE > 0.2 V
iB ! IBSe qVBE /kT

Input curve Output family

BJT 

B

E

C

+

–
–

+

vBE

vCE

iB

iC

vDS

iD

Saturation (FAR)

Cutoff

Linear
or

Triode

iD ! K [vGS - VT(vBS)]2/2!
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6.012 - Microelectronic Devices and Circuits 
Lecture 10 - MOS Caps II; MOSFETs I - Summary
 

• Quantitative modeling (Apply depl. approx. to MOS cap., vBC = 0) 
Definitions: VFB ≡ vGB such that φ(0) = φp-Si Cox * ≡ εox/tox 

VT ≡ vGB such that φ(0) = – φp-Si 

Results and expressions (For n-MOS example) 
1. Flat-band voltage, VFB  = φp-Si – φm 
2. Accumulation layer sheet charge density, qA* = – Cox *(vGB – VFB) 
3. Maximum depletion region width, XDT  = [2εSi|2φp-Si|/qNA]1/2 

4. Threshold voltage, VT = VFB  – 2φp-Si + [2εSi qNA|2φp-Si|]1/2/Cox * 
5. Inversion layer sheet charge density, qN* = – Cox *(vGB – VT) 

• Subthreshold charge 
Negligible?: Yes in general, but (1) useful in some cases, and (2) an

issue for modern ULSI logic and memory circuits 

• MOS with bias applied to the adjacent n+-region 
Maximum depletion region width: XDT  = [2εSi(|2φp-Si| – vBC)/qNA]1/2
 

Threshold voltage: VT = VFB  – 2φp-Si + [2εSi qNA(|2φp-Si| – vBC)]1/2/Cox *
 

(vGC at threshold) • MOSFET i-v (the Gradual Channel Approximation) 
Vertical problem for channel charge; in-plane drift to get current 
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