6.012 - Microelectronic Devices and Circuits

Lecture 11 - MOSFETs II; Large Signal Models - Outline

- Announcements

On Stellar - 2 write-ups on MOSFET models

- The Gradual Channel Approximation (review and more)

MOSFET model: gradual channel approximation (Example: n-MOS)

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & \text { for }\left(V_{G S}-V_{T}\right) / \alpha \leq 0 \leq V_{D S} \quad \text { (cutoff) }
\end{array}\right.} \\
& \mathrm{i}_{\mathrm{D}} \approx \begin{cases}\mathrm{~K}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{T}\right)^{2} / 2 \alpha & \text { for } 0 \leq\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right) / \alpha \leq \mathrm{V}_{\mathrm{DS}} \text { (saturation) } \\
\mathrm{K}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}^{2}\right.\end{cases} \\
& K\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}-\alpha \mathrm{V}_{\mathrm{DS}} / 2\right) \mathrm{V}_{\mathrm{DS}} \text { for } 0 \leq \mathrm{V}_{\mathrm{DS}} \leq\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right) / \alpha \quad \text { (linear) } \\
& \text { with } K \equiv(W / L) \mu_{e} C_{o x}{ }^{*}, V_{T}=V_{F B}-2 \phi_{p-S i}+\left[2 \varepsilon_{S i} q N_{A}\left(\left|2 \phi_{p-S i}\right|-v_{B S}\right)\right]^{1 / 2} / C_{o x}{ }^{*} \\
& \text { and } \alpha=1+\left[\left(\varepsilon_{S i} q N_{A} / 2\left(\mid 2 \phi_{p-S i}-v_{B S}\right)\right]^{1 / 2} / C_{o x} \quad \text { (frequently } \alpha \approx 1\right. \text {) }
\end{aligned}
$$

- Refined device models for transistors (MOS and BJT)

Other flavors of MOSFETS: p-channel, depletion mode The Early Effect:

1. Base-width modulation in BJTs: $\mathrm{w}_{\mathrm{B}}\left(\mathrm{v}_{\mathrm{CE}}\right)$
2. Channel-length modulation in MOSFETs: $L\left(v_{D S}\right)$ Charge stores:
3. Junction diodes
4. BJTs
5. MOSFETs

Extrinsic parasitics: Lead resistances, capacitances, and inductances

An n-channel MOSFET showing gradual channel axes

Gradual Channel Approximation:

- A one-dimensional electrostatics problem in the x direction is solved to find the channel charge, $\mathrm{q}_{\mathrm{N}}{ }^{*}(\mathrm{y})$; this charge depends on $\mathrm{v}_{\mathrm{GS}}, \mathrm{v}_{\mathrm{CS}}(\mathrm{y})$ and v_{BS}.
- A one-dimensional drift problem in the y direction then gives the channel current, i_{D}, as a function of $\mathrm{v}_{\mathrm{GS}}, \mathrm{v}_{\mathrm{DS}}$, and v_{BS}.

Gradual Channel Approximation i-v Modeling

 (n -channel MOS used as the example)The Gradual Channel Approximation is the approach typically used to model the drain current in field effect transistors.*
It assumes that the drain current, i_{D}, consists entirely of carriers flowing in the channel of the device, and is thus proportional to the sheet density of carriers at any point and their net average velocity. It is not a function of y, but its components in general are:

$$
i_{D}=-W \cdot-q \cdot n_{c h}^{*}(y) \cdot \bar{s}_{e y}(y)
$$

In this expression, W is the width of the device, $-q$ is the charge on each electron, $n^{*}(y)$ is sheet electron concentration in the channel (i.e. electrons $/ \mathrm{cm}^{2}$) at \mathbf{y}, and $\bar{s}_{e y}(y)$ is the net electron velocity in the y-direction.
If the electric field is not too large, $\bar{s}_{e y}(y)=-\mu_{e} E_{y}(y)$, and

$$
i_{D}=-W \cdot q \cdot n_{c h}^{*}(y) \cdot \mu_{e} E_{y}(y)=W \cdot q \cdot n_{c h}^{*}(y) \cdot \mu_{e} \frac{d v_{C S}(y)}{d y}
$$

Cont.

[^0]
GCA i-v Modeling, cont.

We have:

$$
i_{D}=W \cdot q \cdot n_{c h}^{*}(y) \cdot \mu_{e} \frac{d v_{c s}(y)}{d y}
$$

To eliminate the derivative from this equation we integrate both sides with respect to y from the source $(\mathrm{y}=0$) to the drain (y $=\mathrm{L}$). This corresponds to integrating the right hand side with respect to v_{CS} from 0 to v_{DS}, because $\mathrm{v}_{\mathrm{CS}}(0)=0$ to $\mathrm{v}_{\mathrm{CS}}(\mathrm{L})=\mathrm{v}_{\mathrm{DS}}$:

$$
\int_{0}^{L} i_{D} d y=W \cdot \mu_{e} \cdot q \cdot \int_{0}^{L} n_{c h}^{*}(y) \frac{d v_{C S}(y)}{d y} d y=W \cdot \mu_{e} \cdot q \cdot \int_{0}^{v_{D S}} n_{c h}^{*}\left(v_{C S}\right) d v_{C S}
$$

The left hand integral is easy to evaluate; it is simply $i_{D} L$. Thus we have:

$$
\int_{0}^{L} i_{D} d y=i_{D} L \Rightarrow i_{D}=\frac{W}{L} \cdot \mu_{e} \cdot q \cdot \int_{0}^{v_{D S}} n_{c h}^{*}\left(v_{C S}\right) d v_{C S}
$$

GCA i-v Modeling, cont.

The various FETs differ primarily in the nature of their channels and thereby, the expressions for $n_{c h}^{*}(y)$.
For a MOSFET we speak in terms of the inversion layer charge, $q_{n}{ }^{*}(y)$, which is equivalent to $-q \cdot n^{*}{ }_{c h}(y)$. Thus we have:

$$
i_{D}=-\frac{W}{L} \mu_{e} \int_{0}^{v_{D S}} q_{n}^{*}\left(v_{G S}, v_{C S}, v_{B S}\right) d v_{C S}
$$

We derived $q_{n}{ }^{*}$ earlier by solving the vertical electrostatics problem, and found:

$$
\begin{aligned}
& q_{n}^{*}\left(v_{G S}, v_{C S}, v_{B S}\right)=-C_{o x}^{*}\left[v_{G S}-v_{C S}-V_{T}\left(v_{C S}, v_{B S}\right)\right] \\
& \quad \text { with } V_{T}\left(v_{C S}, v_{B S}\right)=V_{F B}-2 \phi_{p-S i}+\left\{2 \varepsilon_{S i} q N_{A}\left[2 \phi_{p-S i} \mid-v_{B S}+v_{C S}\right]\right\}^{1 / 2} / C_{o x}^{*}
\end{aligned}
$$

Using this in the equation for i_{D}, we obtain:

$$
i_{D}\left(v_{G S}, v_{D S}, v_{B S}\right)=\frac{W}{L} \mu_{e} \int_{0}^{v_{D S}}\left\{C_{o x}^{*}\left[v_{G S}-v_{C S}-V_{T}\left(v_{C S}, v_{B S}\right)\right]\right\} d v_{C S}
$$

At this point we can do the integral, but it is common to simplify the expression of $V_{T}\left(v_{C S} v_{B S}\right)$ first, to get a more useful result.

GCA - dealing with the non-linear dependence of V_{T} on v_{CS}

Approach \#1 - Live with it

Even though $V_{T}\left(v_{C S}, v_{B S}\right)$ is a non-linear function of $v_{C S}$, we can still put it in this last equation for i_{D} :

$$
i_{D}=\frac{W}{L} \mu_{e} \int_{0}^{v_{D S}}\left\{C_{o x}^{*}\left[v_{G S}-v_{C S}-V_{F B}+2 \phi_{p-S i}-\frac{t_{o x}}{\varepsilon_{o x}} \sqrt{2 \varepsilon_{S i} q N_{A}\left[\left|2 \phi_{p-S i}\right|-v_{B S}+v_{C S}\right]}\right]\right\} d v_{C S}
$$

and do the integral, obtaining:

$$
\begin{aligned}
i_{D}\left(v_{D S}, v_{G S}, v_{B S}\right)=\frac{W}{L} & \mu_{e} C_{o x}^{*}\left\{\left(v_{G S}-\left|2 \phi_{p}\right|-V_{F B}-\frac{v_{D S}}{2}\right) v_{D S}\right. \\
& \left.+\frac{3}{2} \sqrt{2 \varepsilon_{S i} q N_{A}}\left[\left(\left|2 \phi_{p}\right|+v_{D S}-v_{B S}\right)^{3 / 2}-\left(\left|2 \phi_{p}\right|-v_{B S}\right)^{3 / 2}\right]\right\}
\end{aligned}
$$

The problem is that this result is very unwieldy, and difficult to work with. More to the point, we don't have to live with it because it is easy to get very good, approximate solutions that are much simpler to work with.

GCA - dealing with the non-linear dependence of V_{T} on v_{CS}

Approach \#2 - Ignore it

Early on researchers noticed that the difference between V_{T} at 0 and at \mathbf{y}, i.e. $V_{T}\left(0, v_{B S}\right)$ and $V_{T}\left(v_{D S}, v_{B S}\right)$, is small, and that using $V_{T}\left(0, v_{B S}\right)$ alone gives a result that is still quite accurate and is very easy to use:

$$
\begin{gathered}
i_{D}\left(v_{G S}, v_{D S}, v_{B S}\right)=\frac{W}{L} \mu_{e} \int_{0}^{v_{D S}}\left\{C_{o x}^{*}\left[v_{G S}-v_{C S}-V_{T}\left(0, v_{B S}\right)\right]\right\} d v_{C S} \\
=\frac{W}{L} \mu_{e} C_{o x}^{*}\left\{\left[v_{G S}-V_{T}\left(0, v_{B S}\right)\right] v_{D S}-\frac{v_{D S}^{2}}{2}\right\} \quad \begin{array}{l}
\text { The variable, } v_{\text {cs }}, \\
\text { is set to o i in } V_{T} .
\end{array}
\end{gathered}
$$

This result looks much simpler than the result of Approach \#1, and it is much easier to use in hand calculations. It is, in fact, the one most commonly used by the vast majority of engineers. At the same time, the fact that it was obtained by ignoring the dependence of V_{T} on v_{cs} is cause for concern, unless we have a way to judge the validity of our approximation. We can get the necessary metric through Approach \#3.

GCA - dealing with the non-linear dependence of V_{T} on $v_{C S}$
Approach \#3 - Linearize it (i.e. expand it, keep first order term) In this approach we leave the variation of V_{T} with $v_{C S}$ in, but linearize it by doing a Taylor's series expansion about $\mathrm{v}_{\mathrm{cs}}=0$:

$$
V_{T}\left[v_{C S}, v_{B S}\right] \approx V_{T}\left(0, v_{B S}\right)+\left.\frac{\partial V_{T}}{\partial v_{C S}}\right|_{v_{C S}=0} \cdot v_{C S}
$$

Taking the derivative and evaluating it at $\mathrm{v}_{\mathrm{CS}}=0$ yields:

$$
V_{T}\left[v_{C S}, v_{B S}\right] \approx V_{T}\left(0, v_{B S}\right)+\frac{t_{o x}}{\varepsilon_{o x}} \sqrt{\frac{\varepsilon_{S i} q N_{A}}{2\left(\left|2 \phi_{p}\right|-v_{B S}\right)}} \cdot v_{C S}
$$

With this $q_{n}{ }^{*}$ is

$$
\begin{aligned}
q_{n}^{*}\left(v_{G S}, v_{C S}, v_{B S}\right) & \approx-C_{o x}^{*}\left[v_{G S}-v_{C S}+V_{T}\left(0, v_{B S}\right)-\frac{t_{o x}}{\varepsilon_{o x}} \sqrt{\frac{\varepsilon_{S i} q N_{A}}{2\left(\left|2 \phi_{p}\right|-v_{B S}\right)}} \cdot v_{C S}\right] \\
& =-C_{o x}^{*}\left[v_{G S}-\alpha v_{C S}+V_{T}\left(v_{B S}\right)\right]
\end{aligned}
$$

where

$$
\alpha \equiv\left[1+\frac{t_{o x}}{\varepsilon_{o x}} \sqrt{\varepsilon_{S i} q N_{A} / 2\left(\left|2 \phi_{p}\right|-v_{B S}\right)}\right] \quad \text { and } \underset{T}{V_{T}\left(v_{B S}\right) \equiv V_{T}\left(0, v_{B S}\right)}
$$

GCA - dealing with the non-linear dependence of V_{T} on $v_{C S}$
Using this result in the integral in the expression for i_{D} gives:

$$
\begin{aligned}
i_{D}\left(v_{G S},\right. & \left.v_{D S}, v_{B S}\right)=\frac{W}{L} \mu_{e} \int_{0}^{v_{D S}}\left\{C_{o x}^{*}\left[v_{G S}-\alpha v_{C S}-V_{T}\left(0, v_{B S}\right)\right]\right\} d v_{C S} \\
& =\frac{W}{L} \mu_{e} C_{o x}^{*}\left\{\left[v_{G S}-V_{T}\left(v_{B S}\right)\right] v_{D S}-\alpha \frac{v_{D S}^{2}}{2}\right\} \quad \begin{array}{c}
\begin{array}{c}
\text { Except for } \alpha \text { this is the } \\
\text { Approach } 2 \text { result. }
\end{array}
\end{array}
\end{aligned}
$$

Plotting this equation for increasing values of v_{GS} we see that it traces inverted parabolas as shown below.

Note: i_{D} saturates after its peak value (solid lines), rather than decreasing (dashed lines).

Gradual Channel Approximation, cont.

The drain current expression, cont:
The point at which i_{D} reaches its peak value and saturates is easily found. Taking the derivative and setting it equal to zero we find:

$$
\frac{\partial i_{D}}{\partial v_{D S}}=0 \quad \text { when } \quad v_{D S}=\frac{1}{\alpha}\left[v_{G S}-V_{T}\left(v_{B S}\right)\right]
$$

What happens physically at this voltage is that the channel (inversion) at the drain end of the channel disappears:

$$
\begin{aligned}
q_{n}^{*}(L) & \approx-C_{o x}^{*}\left\{v_{G S}-V_{T}\left(v_{B S}\right)-\alpha v_{D S}\right\} \\
& =0 \quad \text { when } \quad v_{D S}=\frac{1}{\alpha}\left[v_{G S}-V_{T}\left(v_{B S}\right)\right]
\end{aligned}
$$

For $v_{D S}>\left[v_{G S}-V_{T}\left(v_{B S}\right)\right] / \alpha$, all the additional drain-to-source voltage appears across the high resistance region at the drain end of the channel where the mobile charge density is very small, and i_{D} remains constant independent of $v_{D S}$:

$$
i_{D}\left(v_{G S}, v_{D S}, v_{B S}\right)=\frac{1}{2 \alpha} \frac{W}{L} \mu_{e} C_{o x}^{*}\left[v_{G S}-V_{T}\left(v_{B S}\right)\right]^{2} \quad \text { for } \quad v_{D S}>\frac{1}{\alpha}\left[v_{G S}-V_{T}\left(v_{B S}\right)\right]
$$

Gradual Channel Approximation, cont.

The full model:

With this drain current expression, we now have the complete set of Gradual Channel Model expressions for the MOSFET terminal characteristics in the three regions of operation:
Valid for $v_{B S} \leq 0$, and $v_{D S} \geq 0$:

$$
i_{G}\left(v_{G S}, v_{D S}, v_{B S}\right)=0 \quad \text { and } \quad i_{B}\left(v_{G S}, v_{D S}, v_{B S}\right)=0
$$

$i_{D}\left(v_{G S}, v_{D S}, v_{B S}\right)=\left\{\begin{array}{ccc}0 & \text { for } & {\left[v_{G S}-V_{T}\left(v_{B S}\right)\right]<0<\alpha v_{D S}} \\ \frac{1}{2} \frac{W}{\alpha L} \mu_{e} C_{o x}^{*}\left[v_{G S}-V_{T}\left(v_{B S}\right)\right]^{2} & \text { for } & 0<\left[v_{G S}-V_{T}\left(v_{B S}\right)\right]<\alpha v_{D S} \\ \frac{W}{\alpha L} \mu_{e} C_{o x}^{*}\left\{v_{G S}-V_{T}\left(v_{B S}\right)-\alpha \frac{v_{D S}}{2}\right\} \alpha v_{D S} & \text { for } & 0<\alpha v_{D S}<\left[v_{G S}-V_{T}\left(v_{B S}\right)\right]\end{array}\right.$
with $\quad V_{T}\left(v_{B S}\right) \equiv V_{F B}-2 \phi_{p-S i}+\frac{1}{C_{o x}^{*}}\left\{2 \varepsilon_{S i} q N_{A}\left[\left|2 \phi_{p-S i}\right|-v_{B S}\right]\right\}^{1 / 2}$

$$
\alpha \equiv 1+\frac{1}{C_{o x}^{*}}\left\{\frac{\varepsilon_{S i} q N_{A}}{2\left[2 \phi_{p-S i} \mid-v_{B S}\right]}\right\}^{1 / 2} \quad \mathrm{C}_{\mathrm{ox}}^{*} \equiv \frac{\varepsilon_{o x}}{t_{o x}}
$$

Gradual Channel Approximation, cont.

The full model, cont:

$$
\begin{aligned}
& i_{G}\left(v_{G S}, v_{D S}, v_{B S}\right)=0 \quad i_{B}\left(v_{G S}, v_{D S}, v_{B S}\right)=0 \\
& i_{D}\left(v_{G S}, v_{D S}, v_{B S}\right)=\left\{\begin{array}{c}
0 \\
\frac{K}{2}\left[v_{G S}-V_{T}\left(v_{B S}\right)\right]^{2} \\
K\left\{v_{G S}-V_{T}\left(v_{B S}\right)-\frac{\alpha v_{D S}}{2}\right\} \alpha v_{D S}
\end{array}\right.
\end{aligned}
$$

$i_{D}\left(v_{G S}, v_{D S}, v_{B S}\right)=\left\{\begin{array}{ccccc}0 & \text { for } & {\left[v_{G S}-V_{T}\left(v_{B S}\right)\right]<0<\alpha v_{D S}} & \text { Cutoff } \\ \frac{K}{2}\left[v_{G S}-V_{T}\left(v_{B S}\right)\right]^{2} & \text { for } & 0<\left[v_{G S}-V_{T}\left(v_{B S}\right)\right]<\alpha v_{D S} & \text { Saturation } \\ K\left\{v_{G S}-V_{T}\left(v_{B S}\right)-\frac{\alpha v_{D S}}{2}\right\} \alpha v_{D S} & \text { for } & 0<\alpha v_{D S}<\left[v_{G S}-V_{T}\left(v_{B S}\right)\right] \begin{array}{c}\text { Linear or } \\ \text { Triode }\end{array}\end{array}\right.$

The operating regions of MOSFETs and BJTs:

Comparing an n-channel MOSFET and an npn BJT

Input curve

Output family

p-channel MOSFET's: The other "flavor" of MOSFET

p-channel
Structure:

The voltage progression:

Gradual channel model*:

Valid for $v_{S B} \leq 0$, and $v_{S D} \geq 0: \quad i_{G}\left(v_{S G}, v_{S D}, v_{S B}\right)=0$ and $i_{B}\left(v_{S G}, v_{S D}, v_{S B}\right)=0$
$-i_{D}\left(v_{S G}, v_{S D}, v_{S B}\right)=\left\{\begin{array}{ccc}0 & \text { for } \quad\left[v_{S G}-\left|V_{T}\left(v_{S B}\right)\right|\right]<0<\alpha v_{S D} \\ \frac{1}{2} \frac{W}{\alpha L} \mu_{e} C_{o x}^{*}\left[v_{S G}-\mid V_{T}\left(v_{S B}\right)\right]^{2} & \text { for } \quad 0<\left[v_{S G}-\left|V_{T}\left(v_{S B}\right)\right|\right]<\alpha v_{S D} \\ \frac{W}{\alpha L} \mu_{e} C_{o x}^{*}\left\{v_{S G}-\left|V_{T}\left(v_{S B}\right)\right|-\alpha \frac{v_{S D}}{2}\right\} \alpha v_{S D} & \text { for } & 0<\alpha v_{S D}<\left[v_{S G}-\mid V_{T}\left(v_{S B}\right)\right]\end{array}\right.$

$$
V_{T}\left(v_{S B}\right)=V_{F B}-2 \phi_{n-S i}-\gamma\left[2 \phi_{n-S i}-v_{S B}\right]^{1 / 2} \quad \text { with } \gamma \equiv \frac{1}{C_{o x}^{*}}\left[2 \varepsilon_{S i} q N_{D}\right]^{1 / 2}
$$

* Enhancement mode only, V_{T} (i.e. v_{GS} at threshold) <0.

p-channel MOSFET's: cont.

```
p-channel
```


Structure:

Symbol and FAR model:

Oriented with source down like n-channel:

Symbol:

Oriented as found in circuits:

Lecture 11 - Slide 15

Depletion mode MOSFET's: The very last MOSFET variant

It is possible to have n-channel MOSFETs with $\mathrm{V}_{\mathrm{T}}<0$.
In this situation the channel exists with $\mathrm{v}_{\mathrm{GS}}=0$, and a negative bias must be applied to turn it off.
This type of device is called a "depletion mode" MOSFET.
Devices with $\mathrm{V}_{\mathrm{T}}>0$ are "enhancement mode."

For a p-channel depletion mode MOSFET, $\mathrm{V}_{\mathrm{T}}>0$.
The expressions for $i_{D}\left(v_{G S}, v_{D S}, v_{B S}\right)$ are exactly the same for enhancement mode and depletion mode MOSFETs.

BJT Characteristics (npn)

Input curve

Output family

Forward active region
Vbe $>0.6 \mathrm{~V}$
VGe $>0.2 \mathrm{~V}$
(i.e. VBC $<0.4 \mathrm{~V}$) i_{R} is negligible

Other regions
Cutoff:
Vbe < 0.6 V
Saturation: VCE < 0.2 V

Lecture 11 - Slide 17

* Typically the Early effect is far more important in small-signal applications than large signal.

Active Length Modulation - the Early Effect: MOSFET

"Channel length modulation"

MOSFET:

We begin by recognizing that the channel length decreases with increasing v_{DS} and writing this dependence to first order in v_{DS} :

$$
\begin{aligned}
& L \approx L_{o}\left[1-\lambda\left(v_{D S}-V_{D S a t}\right)\right] \text { and } \frac{1}{L} \approx \frac{\left[1+\lambda\left(v_{D S}-V_{D S a t}\right)\right]}{L_{o}} \\
& K=\frac{W}{\alpha L} \mu_{e} C_{o x}^{*}
\end{aligned}
$$

Inserting the channel length variation with v_{DS} into K we have:

$$
K \approx K_{o}\left[1+\lambda\left(v_{D S}-V_{D S a t}\right)\right] \quad \text { where } \quad K_{o} \equiv \frac{W}{\alpha L_{o}} \mu_{e} C_{o x}^{*}
$$

Thus, in saturation:

$$
i_{D} \approx \frac{K_{o}}{2}\left(v_{G S}-V_{T}\right)^{2}\left[1+\lambda\left(v_{D S}-V_{D S a t}\right)\right]
$$

Note: λ is the inverse of the Early Voltage, V_{A} (i.e., $\lambda=1 / V_{A}$).

Active Length Modulation - the Early Effect: BJT

"Base width modulation"
BJT:
We begin by recognizing that the base width decreases with increasing v_{CE} and writing this dependence to first order in v_{CE} :

$$
w_{B}^{*} \approx w_{B o}^{*}\left(1-\lambda v_{C E}\right) \quad \text { and } \quad \frac{1}{w_{B}^{*}} \approx \frac{1}{w_{B o}^{*}}\left(1+\lambda v_{C E}\right)
$$

Then we recall that in a modern BJT the base defect, δ_{B}, is negligible and β_{F} depends primarily on the emitter defect, δ_{E}, and can be written:

$$
\beta_{F}=\frac{\left(1+\delta_{B}\right)}{\left(\delta_{E}+\delta_{B}\right)} \approx \frac{1}{\delta_{E}}=\frac{D_{e}}{D_{h}} \frac{N_{D E}}{N_{A B}} \frac{w_{E}^{*}}{w_{B}^{* *}}
$$

Inserting the base width variation with v_{CE} into β_{F} we have:

$$
\beta_{F} \approx \beta_{F_{0}}\left(1+\lambda v_{C E}\right) \quad \text { where } \quad \beta_{F_{o}} \equiv \frac{D_{e}}{D_{h}} \frac{N_{D E}}{N_{A B}} \frac{w_{E}^{*}}{w_{B o}^{*}}
$$

Thus, in the F.A.R.:

$$
i_{C} \approx \beta_{F_{0}}\left(1+\lambda v_{C E}\right) i_{B}
$$

Note: λ is the inverse of the Early Voltage, V_{A} (i.e., $\lambda=1 / V_{\mathrm{A}}$).

Large signal models*:

BJT:

MOSFET:
n-channel

$\mathrm{i}_{\mathrm{D}} \approx \mathrm{K}\left[\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\left(\mathrm{v}_{\mathrm{BS}}\right)-\mathrm{v}_{\mathrm{DS}} / 2\right] \mathrm{v}_{\mathrm{DS}}$

Large signal models: when will we use them?

Digital circuit analysis/design:
This requires use of the entire circuit, and will be the topic of Lectures 14, 15, and 16.
Bias point analysis/design:
This uses the FAR models (below and Lec. 17ff).

Charge stores in devices: we must add them to our device models

Depletion region charge store

$q_{A, P P}=A \frac{\varepsilon}{d} v_{A B}$
$\left.C_{p p}\left(V_{A B}\right) \equiv \frac{\partial q_{A, P P}}{\partial v_{A B}}\right|_{v_{A B}=V_{A B}}=\frac{A \varepsilon}{d}$

QNR region diffusion charge store

$$
\begin{aligned}
& q_{A B, D F}\left(v_{A B}\right) \approx A q n_{i}^{2} \frac{D_{h}}{N_{D n} w_{n, e f f}}\left[e^{q V_{A B} / k T}-1\right] \\
& \begin{array}{c}
\text { Note: Approximate because we are } \\
\text { only accounting for the charge } \\
\text { store on the lightly doped side. }
\end{array}=\frac{w_{n, e f f}^{2}}{2 D_{h}} i_{D}\left(v_{A B}\right) \\
& C_{d f}\left(V_{A B}\right) \approx \frac{w_{n, e f f}^{2}}{2 D_{h}} \frac{q I_{D}\left(V_{A B}\right)}{k T} \quad \text { Lecture 11 - Slide } 24
\end{aligned}
$$

$$
C_{d p}\left(V_{A B}\right)=A \sqrt{\frac{q \varepsilon_{S i}}{2\left[\phi_{b}-V_{A B}\right]} \frac{N_{A p} N_{D n}}{\left[N_{A p}+N_{D n}\right]}}=\frac{A \varepsilon_{S i}}{w\left(V_{A B}\right)}
$$

$q_{A, D P}\left(v_{A B}\right)=-A \sqrt{2 q \varepsilon_{S i}\left[\phi_{b}-v_{A B}\right] \frac{N_{A p} N_{D n}}{\left[N_{A p}+N_{D n}\right]}}$

Adding charge stores to the large signal models:

$q_{A B}$: Excess carriers on p-side plus excess carriers on n-side plus junction depletion charge.

BJT: npn (in F.A.R.)

q_{BE} : Excess carriers in base plus $\mathrm{E}-\mathrm{B}$ junction depletion charge $q_{B c}$: C-B junction depletion charge
q_{G} : Gate charge; a function of $\mathrm{v}_{\mathrm{GS}}, \mathrm{v}_{\mathrm{DS}}$, and v_{BS}.
$q_{D B}: D-B$ junction depletion charge
$q_{S B}: S-B$ junction depletion charge
$q_{D B}: D-B$ junction depletion charge
$q_{S B}: S-B$ junction depletion charge
MOSFET:
n-channel

Lecture 11 - MOSFETS II; Large-Signal Models - Summary

- Gradual channel approximation for FETs

General approach
MOSFETS in strong inversion

1. Ignore variation of V_{T} along channel
2. Linearize variation of V_{T} along channel: introduces α factor

- Additional device model issues The Early Effect:

1. Base-width modulation in BJTs: $\mathrm{w}_{\mathrm{B}}\left(\mathrm{v}_{\mathrm{CE}}\right)$

In the F.A.R.: $i_{C} \approx \beta_{\mathrm{Fo}}\left(1+\mid \mathrm{v}_{\mathrm{CE}}\right) \mathrm{i}_{\mathrm{B}}$
2. Channel-length modulation in MOSFETs: $L\left(v_{D S}\right)$

In saturation: $\mathrm{i}_{\mathrm{D}} \approx \mathrm{K}_{0}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2}\left[1+\lambda\left(\mathrm{V}_{\mathrm{DS}}-\mathrm{V}_{\mathrm{DSat}}\right)\right] / 2 \alpha$
Charge stores:

1. Junction diodes - depletion and diffusion charge
2. BJTs - at EB junction: depletion and diffusion charge
at CB junction: depletion charge (focus on FAR)
3. MOSFETs - between B and S, D: depletion charge of n^{+-p} junctions between G and S, D, B: gate charge (the dominant store)
in cut-off: $C_{g s} \approx C_{g d} \approx 0$; all is $C_{g b}$
linear region: $C_{g s}=C_{g d}=W L C_{o x}{ }^{*} / 2$ in saturation region: $\mathrm{C}_{\mathrm{gs}}=(2 / 3) \mathrm{W} \mathrm{LC}_{0 \times}{ }^{*}$
$\mathrm{C}_{\mathrm{gd}}=0$ (only parasitic Lecture 11 $^{\text {Overlide }} 26$

MIT OpenCourseWare
|http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits

Fall 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

[^0]: * Junction FETs (JFETs), MEtal Semiconductor FETs (MESFETs ${ }^{1}$), and Heterojunction FETs Clif Fonstad, 3/18/08 (HJFETs²), as well as Metal Oxide Semiconductor FETs (MOSFETs). Lecture 11 - Slide 3

 1. Also called Shottky Barrrier FETs (SBFETs). 2. Includes HEMTs, TEGFETs, MODFETs, SDFETs, HFETs, PHEMTs, MHEMTs, etc.
