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In the depletion approximation for n-channel MOS structures we have neglected the electrons 

beneath the gate electrode when the gate voltage is less than the threshold voltage, VT. We said 

that it is only when the gate voltage is above threshold that they are significant, and that they are 

then the dominant negative charge under the gate. Furthermore, we say that above threshold all 

of the gate voltage in excess of VT induces electrons in the channel; thus our model is that the 

sheet charge density under the gate, qN
*, is 
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As MOS integrated circuit technology has evolved to exploit smaller and smaller device 

structures, it has become increasingly important in recent years to look more closely at the 

minority carriers present under the gate when the gate voltage is less than threshold, i.e. in what 

is called the “sub-threshold” region. These carriers cannot be totally neglected, and play an 

important role in device and circuit performance. At first they were viewed primarily as a 

problem, causing undesirable “leakage” currents and limiting circuit performance. Now it is 

recognized that they also enable a very useful mode of MOSFET operation, and that the sub-

threshold region of operation is as important as the traditional cut-off, linear, and saturations 

regions of operation. 

To begin our study of the sub-threshold region, we will first quickly review the electrostatics 

of the MOS capacitor, and the electrostatic potential profile predicted by the depletion 

approximation model. Then we will use this result to derive a more accurate expression than that 

in Equation 1 for qN
* below threshold, and use the resulting expression to, among other things, 

assess the assumption that the contribution of the mobile electrons underneath the gate to the net 

charge density in the depletion region is negligible compared to the contribution from the ionized 

acceptors. Finally we will look at the current-voltage characteristic of a MOSFET operating in 

the sub-threshold region, and merge it with our earlier model so that we then have a model in 

which the mobile electron charge is taken into account and the drain current is no longer 

identically zero when vGS is less than VT. 
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The Electrostatics of the MOS Capacitor with vBC = 0 

Consider the MOS capacitor with vBC = 0 illustrated in Figure 1, the same structure we used 

when we first looked at the MOS capacitor using the depletion approximation. In the depletion 
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FIGURE 1 
A MOS capacitor connected as a two-terminal capacitor with vGC = vGB = 0. 

approximation, we assume that Equation 1 holds and that the net charge density profile, ρ(x), 

under the gate for VFB < vGC < VT can be approximated as: 
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With this assumption, we found that the electrostatic potential profile is: 
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This expression is plotted in Figure 2, which also continues the plot through the oxide to the 

gate, from which we can also get the expression relating the depletion region width, xD, to vGB 

and VFB: 
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FIGURE 2 
A sketch of φ(x) from the metal on the left, through the oxide, and into the p-type 
semiconductor in an n-channel MOS capacitor for an applied gate bias, vGB, in the weak-
inversion, sub-threshold region. 

Equation 4 is useful because it can be solved explicitly for xD, and the result can be used to 

obtain an expression for φ(x) as a function of vGB. However, it will turn out that what is most 

important to us is φ(0), the value of the potential at the interface, and φ(0) is much easier to relate 

to vGB than is φ(x) at an arbitrary x. To do so we first find xD in terms of 

φ(0): 
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Using this in Equation 4 gives us an equation relating φ(0) and vGB that will be useful to us 

shortly: 

! 

vGB "VFB =
tox

#ox
2#SiqNA $(0) - $p[ ] +  $(0) - $p[ ]                                    (6)

Sub-threshold Electron Sheet Charge Density, vGC = 0 

Returning to our original goal, which was to find the electron population density, n(x), under 

the gate, and then the electron sheet charge density, qN
*, we note that the Boltzman relationship 

between the electrostatic potential and carrier population holds under the gate of the MOS 

capacitor in Figure 1 because the current in the x-direction is zero. Thus we have: 
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In these equations we use φt for the thermal voltage, kT/q, and we have indicated the dependency 

on vGB to emphasize that these populations depend on the gate voltage as well as on position, x. 

To obtain the Equations 7b and 8b, we have used po = NA = ni exp(-φp/φt) to get expressions 

explicitly including the quantity [φ(x,vGB) - φp], which also appears in Eqs. 5 and 6. Note: In 

many texts, [φ(0,vGB) - φp] is identified as VB(vGB), the voltage drop between the silicon bulk and 

the oxide-silicon interface, i.e. VB(vGB) ≡ [φ(0,vGB) - φp]. 

We can calculate the electron sheet charge density, qN
*, by multiplying n(x) by –q and 

integrating with respect to x from the interface, x = 0, into the silicon until x = xi, where xi is 

defined as the depth at which φ(x) = 0, and thus where we have n(xi) = p(xi) = ni: 
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The end-point x = xi is used for the integration because for x > xi, p(x) > n(x) and the material is 

still p-type, while for x < xi, n(x) > p(x) and the material net n-type and is said to be “weakly 

inverted.” This is actually a minor point, however, and not worth fretting about, because n(x) 

falls off very rapidly with increasing x, and the main contributions to the integral come from the 

region near the interface (i.e. small x) where φ(x) is near φ(0). The integral itself will be 

significant only when φ(0) approaches –φp, which further reduces the importance of the tail, and 

how far from the interface one integrates. 

The next step in calculating qN
* would seem to be to replace φ(x) in Eq. 9c with an explicit 

function of x so we can do the integral. We can do this using Eq. 3, and we find 

4




6.012 Supplementary Notes: MOSFETs in the Sub-threshold Region (i.e. a bit below VT) 
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This integral is clearly difficult to evaluate, however, without resorting to numerical techniques, 

a less than optimum situation. An alternative approach is to make use of our earlier observation 

that the main contribution to the integral occurs near x = 0, and to further note that near x = 0 the 

potential variation with x is nearly linear. A bit of algebra gives us 
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Using this approximation in the Eq. 9c yields an analytical expression which does not obscure 

the dependences on material properties 

! 

qN
" #( ) $ % q

ni
2#t
NA

&Si

2qNA # 0,vGB( ) %#p[ ]
e

# 0,vGB( )%# p[ ] # t    for  # 0,vGB( ) ' %#p  i.e vGB 'VT    (12)

Note that in the range validity, φ(0,vGB) ≤ -φp, corresponds to gate voltages such that vGB ≤ VT. 

To see if the sub-threshold charge is large or small relative to the channel charge which 

develops above threshold [i.e., qN
*(vGB) = Cox 

*(vGB-VT)], one can evaluate Eq. 12 for values of 

φ(0,vGB) near threshold, say for example (-φp - 10φt) to -φp. The corresponding values of vGB can 

be found using Eq. 6, and then one can plot qN
* verses vGB in the vicinity of vGB = VT; the result 

is shown in Figure 3 for a MOS capacitor with NA = 1018 cm -3 and tox = 3 nm. Note that the 

weak-inversion charge does not increase further above threshold, but instead is pinned at the 

value it reaches when vGB = VT. (This value is 7.2 x 10-9 Coul/cm2 for the specific values of NA 

and tox used in Figure 3). 

The first thing to note in Figure 3 is that the range of gate voltages where the sub-threshold 

charge is significant in this example is from about 50 mV below threshold to threshold. Note 

also that neglecting the sub-threshold charge only leads to a 6 mV error in the threshold, VT, that 
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FIGURE 3 
The electron sheet charge density under the gate with a gate voltage in the vicinity of

threshold. The blue curve corresponds to the sub-threshold weak-inversion charge [Eq.

12], and the red curve is the strong inversion charge from traditional depletion

approximation modeling [Eq. 1]. The sum is plotted in the yellow curve.


would be extrapolated from a C-V measurement; thus, taking the sub-threshold electron charge 

into account makes only a very minor correction to the predicted value of 1.43 Volts. 

Another way to get a feel for the relative significance, or insignificance, of the sub-threshold 

electron charge is to compare it to the sheet charge in the depletion region at threshold, i.e. 

qNAXD = (2εSi|2φp|qNA)1/2. A quick calculation shows that this charge is 5.2 x 10-7 coul/cm2, 

which is about 70 times larger than qN
*(VT). 

Returning to our expression for the charge under the gate below threshold, Eq. 12, we next 

take the derivation one step further to express qN
* explicitly in terms of vGB. One way to do this 

is to return to Eq. 6 and solve it for φ(0,vGB), which yields 

6




6.012 Supplementary Notes: MOSFETs in the Sub-threshold Region (i.e. a bit below VT) 

! 

"(0,vGB) = "p +
2#SiqNA

#ox tox( )
2

1+
vGB $VFB

2#SiqNA #ox tox( )
2
$1

% 

& 
' 
' 

( 

) 
* 
* 

2

                                 (13)

Putting this into Eq. 12 clearly won’t lead to an equation that gives one much insight, so it seems 

worthwhile to look into making simplifying approximations before proceeding, particularly since 

we know from Figure 3 that the most important region is the small range of voltages below vGB = 

VT, i.e. φ(0) = -φp. Perhaps φ(0) can be modeled satisfactorily as varying linearly with VT. 

To see if a linear approximation is realistic, it is instructive to use Eq. 12 to plot φ(0,vGB) vs 

vGB, which has been done in Figure 4. Referring to this figure, it seems clear that a linear 

approximation will be pretty good when the surface potential is much larger that the bulk 

potential, and that it is reasonable to approximate φ(0,vGB) near vGB = VT as 

! 

"(0,vGB ) # #"p( ) $ vGB #VT( )
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                                   (14)

To evaluate the derivative in this expression we first use Eq. 12 to calculate dvGB/dφ , 

FIGURE 4 
Comparing the variation of the surface potential, φ(0), with gate voltage, vGB, in flat band 
on the left to the vicinity of threshold on the right. The relationship is clearly very linear in 
the weak inversion sub-threshold region. 
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Then we evaluate it at φ(0,vGB) = -φp, labeling the result “n”: 
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Notice that in writing this expression we have replaced εox/tox with its equivalent, Cox 
*. Inverting 

Eq. 16 and using it in Eq. 14 yields the approximate linear expression we seek 
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Finally, we insert Eq. 17 into Eq. 12 getting a much more manageable and instructive 

expression for qN
*(vGB) than we would have gotten using Eq. 13 in Eq. 12 directly. Using Eq. 17 

we find 
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where VT = VFB + |2φp| + (2εSiqNA|2φp|)1/2/Cox 
* . 

Equation 18 can be simplified further by recognizing that e-2φp = (NA/ni)2 . Making this 

substitution yields 
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Still further simplification can be achieved by (VT-vGB)/n is typically much smaller than |2φp|, so 

we can say [-2φp – (VT-vGB)/n] ≈ -2φp. Making this approximation, we see that the square root 

term in Eq. 19 is the same as the one in Eq. 16 defining n and that it is approximately (n-1) Cox 
*. 

Consequently, we can write qN
*(vGB) as. 
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qN
"
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This result concludes our derivation of qN
*(vGB) for two-terminal MOS capacitors. 

Summarizing our results thus far, we find that accounting for the electrons under the gate below 

threshold has an arguably negligible impact on the electrostatics of the MOS capacitor. Its 
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primary impact is to require a minor correction in the threshold voltage calculation. The 

situation will be quite different in the case of the sub-threshold drain current of a MOSFET, 

which we will study shortly. First, however, we must extend our results to include three-terminal 

MOS capacitors, i.e., to the case where vBC ≠ 0. 

Sub-threshold Electron Sheet Charge Density in a 3-terminal MOS Capacitor, vBC ≠ 0 

To model the sub-threshold drain current of a MOSFET, we have to extend our model of the 

electron population density, n(x), under the gate to include a bias between the adjacent n+ region 

and the channel, i.e. to allow for a non-zero vBC, as shown in Figure 5. To understand how this 

bias, vBC, effects the electron population under the gate, it is instructive to first think about the 

role the n+ region played in establishing the electron population in the two-terminal MOS 

capacitor situation we just looked at. We in fact did not even mention the n+ region during our 

derivation, but the n+ region does play a very important role because it supplies the electrons that 

are under the gate below threshold, i.e., qN
*(vGB<VT). The n+ region is a reservoir of electrons, 

and those electrons spill out of it into the region under the gate when the electrostatic potential 

energy barrier confining the electrons to the reservoir, -qΔφ, is lowered by a positive gate 

voltage. The barrier is lowered most near the oxide-silicon interface, and most of the carriers 

spill across near that interface, however, at any depth that the barrier is reduced, carriers can spill 

across. What we calculated when we found qN
*(vGB) is the total number of electrons that can 

FIGURE 5 
A MOS capacitor connected as a bias applied between the substrate and n+ region, i.e. 
vBC ≠ 0. 
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spill across and into the region under the gate when the voltage on the gate is vGB. 

If the n+ region is biased positive relative to the substrate, i.e. when vBC < 0, then the 

potential energy of the carriers in the reservoir is lower than when vBC = 0 V. As a result fewer 

carriers can spill out of the source and into the region under the gate; quantitatively, the number 

that can spill into this region decreases exponentially with |vBC|, i.e. evBC/φt. Thus Eq. 12 becomes: 
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and the equivalent of Eq. 20 is: 
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The substrate bias, vBC, does not appear explicitly in Eq. 22, but it does play an important 

role because now both VT and n are now functions of vBC: 
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and 
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1
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When vBC < 0, the depletion region is wider near threshold, so n is smaller (near to 1) and the 

threshold voltage, VT, is larger than when vBC = 0. 

With the derivation of Eq. 22 we are ready to find the drain current of a MOSFET biased 

below threshold and in weak inversion, i.e. in the sub-threshold region. 

The MOSFET Drain Current in the Sub-threshold Region 

In the gradual channel approximation modeling of MOSFET terminal characteristics we have 

done thus far we have said that the drain current is identically zero when the gate voltage is less 

than the threshold voltage, i.e. when vGS ≤ VT. As we will soon see, the population of mobile 

electrons we have just calculated under the gate provides a mechanism for charge flow between 

the drain and source even when vGS ≤ VT, and thus there is in fact a small, non-zero drain current 

through a MOSFET biased below threshold. This is significant because on an integrated circuit 

chip with millions of transistors which are supposed to be off and therefore not dissipating any 
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power, a little current flowing through each transistor can easily add up to be a significant power 

drain, and be a source of serious heating. Furthermore we will find that a MOSFET’s 

characteristics are well defined in the sub-threshold region, and are in no way anomalous or 

parasitic. In fact, they have such interesting properties that it is highly advantageous in a large 

set of applications to design circuits that operate specifically in the sub-threshold region. 

Consider the MOSFET illustrated in Figure 6, and suppose that it is biased with a positive 

drain voltage, i.e. vDS ≥ 0, and a negative substrate voltage, i.e. vBS ≤ 0. Suppose also that the 
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FIGURE 6 
A cross-sectional view of an n-channel MOSFET. The sub-threshold region corresponds 
to having the device biased with vBS ≤ 0, vDS ≥ 0, and vGS near, but below threshold, VT. 

gate is biased positively and a bit less than threshold. At the source end of the gate, electrons 

will spill into the region under the gate as we have just calculated. The same will be true at the 

drain end of the gate, and if vDS = 0 the electron population under the gate will be uniform 

because the situation will be equivalent to that in a 3-terminal MOS capacitor, and the steady 

state current will be identically zero. If vDS > 0, however, the density of electrons that can spill 

under the gate at the drain end will be smaller than at the source end by a factor of e-vDS/φt. Rather 

than electrons flowing under the gate from the drain, the electrons spilling into the region under 

the gate from the source will flow all the way under the gate and into the drain n+ region when 

they reach it. As a result there will be a net positive drain current. To calculate the size of this 

drain current, we need to model how the electrons flow under the gate. 
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First, consider drift. There is a voltage difference between the source and the drain, but the 

electric field laterally between them is small because the voltage between the back contact and 

the source, vBS, falls across the depletion region between the n+ source and the p-type substrate, 

and the voltage between the back contact and the drain, vBD, falls across the drain-substrate 

depletion region. There is thus negligible lateral field in the channel region below threshold to 

drift any electrons there from source to drain. 

Recognizing that drift is negligible below threshold, we see that the mechanism behind the 

sub-threshold drain current must be diffusion driven by the electron concentration gradient going 

from the source to drain: 

! 

iD = "W #De

dqN
*

dy
                                                              (25)

Since iD is effectively uni-directional, i.e. wholly y-directed, and does not depend on L, the 

concentration gradient must be constant and equal to the difference between the end-point 

concentrations divided by L, giving us 
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Using Eq. 21, we see that because the barrier the electrons see at the drain is vDS larger than the 

barrier at the source, qN
*(y = L) and qN

*(y = 0) must be related by: 
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Using this in Equation 26 we obtain 
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Replacing De with µeφt, Eq. 27 becomes 

! 

i
D

(v
GS

,v
DS

,v
BS

) =
W

L
µ
e
C
ox

"
n(v

BS
) #1[ ]$t

2
e
# V

T
v
BS( )#vGS[ ] n(v

BS
)$

t 1 # e#vDS $
t[ ]                   (29)

To simplify things further, and get a final working expression for iD, we recognize the leading 

terms are Ko, leave out the explicit dependence of n and VT on vBS, and reorder vGS and VT: 
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Finally we can identify the pre-factor Ko(n-1)φt
2 as the sub-threshold saturation current, IS,s-t, and 

write this expression as: 

! 

i
D

= I
S,s" t e

v
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                                (31)

This expression is plotted in Figure 7 on a log-linear graph, i.e. log iD vs vDS, which results in 

equally spaced drain current traces for equal increments in vGS-VT. Exactly the same plot would 

be obtained for a BJT if log IC was plotted vs. vCE, for equal increments in vBE., except that rather 

than increasing by a factor of 10 for each 60 mV increment in vBE, which is the case for iC, iD 

increases by a factor of 10 for each n × 60 mV increment in vGS. 

FIGURE 7 
The output characteristics of an n-channel MOSFET operating in the sub-threshold region 
in a log-linear plot. The drain current is normalized to the sub-threshold drain saturation 
current, IS,s-t. 

Connecting the Sub-threshold Diffusion and GCA Strong Inversion Drift Models 

The sub-threshold drain current expression, Eq. 31, was derived assuming vGS ≤ VT, and it 

reaches its maximum value, IS,s-t, at vGS = VT. For larger vGS, according to the depletion 

approximation model, the width of the depletion region, xD, and the variation of the electrostatic 

energy profile with x, stay fixed. This implies that the diffusion current between the drain and 

source saturates at its peak value, IS,s-t, and the additional drain current, iD, for vGS > VT is due to 

carrier drift in the inversion region (i.e., in the channel). Strictly speaking, then, we should write 

the drain current of an n-channel MOSFET as follows: 
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Notice that when writing Eq. 32 we assumed that vDS > 3φt, so (1-evDS/φt) ≈ 1. 

In practice, however, we seldom include IS,s-t in the expressions for the drain current in the 

linear and saturation regions. To understand why this is reasonable it is useful to compare the 

magnitudes of the terms IS,s-t and Ko(vGS-VT)2/2α. To do this in a general way we can first notice 

that both of these terms depend on Ko, so it makes sense normalize them relative to Ko, and thus 

to compare iD(sub-threshold)/Ko and iD(strong inversion)/Ko. We will look in the vicinity of VT, and vary 

(vGS-VT). That way we don’t have to specify either Ko or VT, and our results will be more 

general. 

In the sub-threshold region we have 
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and above threshold, in strong inversion and saturation, we have 
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For the sake of discussion, let us say that we have an n-channel MOSFET with the same 

MOS capacitor we used earlier, with NA = 1018 cm -3 and tox = 3 nm, and that vBS = 0 and vDS >> 

φt. The α (and n) of this device is 1.25, and the maximum normalized diffusion current, iD,s-t/Ko, 

is 1.56 x 10-4 V2. For comparison, the normalized drift current when vGS is just 60 mV above 

threshold, i.e. (vGS – VT) = 0.06 V, is almost an order of magnitude larger, 1.5 x 10-3 V2, and it is 

more than two orders of magnitude larger, 1.6 x 10-2 V2, when (vGS – VT) = 0.2 V. 

If we plot the sum of the normalized diffusion and drift currents in the range VT ± 0.5 V, as 

shown in Figure 8, we can barely see the diffusion current on a linear plot. We have to look 

much more closely to VT, well within VT ± 0.1 V, to see it, as Figure 8b illustrates. The same 

currents are presented in a log-linear plot in Figure 9. In this plot, the exponential nature of the 

sub-threshold diffusion current is clear, and so too is the n × 60 mV/decade sub-threshold slope. 
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6.012 Supplementary Notes: MOSFETs in the Sub-threshold Region (i.e. a bit below VT) 

(a) 

(b) 

FIGURE 8 
The drain current, iD, for gate biases from just below to just above threshold illustrating 
the relative sizes of the diffusion (sub-threshold) and drift (strong inversion) components 
of iD. Figure 8 a shows the situation with a course voltage scale, while Figure 8b has 
smaller increments and thus focuses in more on the curves near VT. 
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6.012 Supplementary Notes: MOSFETs in the Sub-threshold Region (i.e. a bit below VT) 

FIGURE 9 
The drain current, iD, for gate biases from just below to just above threshold as in Figure 8b, 
but now plotted on a log-linear graph so the nature of the small, sub-threshold current and 
its variation with input voltage, vGS, is more clear. 

The simple depletion approximation model we are using, our neglect of drift currents below 

threshold, and our use of a saturated diffusion current above threshold, are all reasonable 

approximations, and are better the further we are above or below threshold. We should expect 

them to have limitations very near threshold, however, and in particular we should not demand 

too much from them as we pass from vGS < VT to vGS > VT. The curves look rather smooth in 

Figure 8 b, but we see a slight kink on the log scale of Figure 9. Interestingly, this kink can be 

smoothed nicely by using the adjusted threshold in the saturation current expression, as shown in 

Fig. 9, but is largely coincidence as the 6 mV shift came from looking at the total gate charge in 

the sub-threshold region, not the inversion layer in strong inversion. Just the same, our simple 

models accurately reflect the physics, and do an outstanding job no matter how one looks at it. 
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