6.012 - Microelectronic Devices and Circuits

Lecture 13 - Linear Equivalent Circuits - Outline

- Announcements Exam Two - Coming next week, Nov. 5, 7:30-9:30 p.m.
- **Review -** Sub-threshold operation of MOSFETs
- Review Large signal models, w. charge stores p-n diode, BJT, MOSFET (sub-threshold and strong inversion)
- Small signal models; linear equivalent circuits General two, three, and four terminal devices
 - **pn diodes:** Linearizing the exponential diode Adding linearized charge stores
 - **BJTs:** Linearizing the F.A.R. β-model Adding linearized charge stores
 - **MOSFETs:** Linearized strong inversion model Linearized sub-threshold model Adding linearized charge stores

Sub-threshold Operation of MOSFETs, cont.

The barrier at the n+-p junction is lowered near the oxide-Si interface for any v_{GS} > V_{FB}.

Sub-threshold Operation of MOSFETs, cont.

- To calculate i_D, we first find the current in each dx thick slab:

Sub-threshold Operation of MOSFETs, cont.

- Integrating this from x = 0 to x = x_D using the approximate value for the integral derived in Lecture 9, and approximating the relationship between $\Delta\phi(0)$ and Δv_{GS} as linear, i.e. $\Delta\phi(0) \approx \Delta v_{GS}/n$, we arrived at:

$$i_{D,s-t}(v_{GS}, v_{DS}, 0) \approx \frac{W}{L} \mu_e C_{ox}^* \left(\frac{kT}{q}\right)^2 [n-1] e^{q\{v_{GS}-V_T\}/nkT} \left(1 - e^{-qv_{DS}/kT}\right)$$

where
$$n \approx \left\{1 + \frac{1}{C_{ox}^*} \sqrt{\frac{\varepsilon_{Si}qN_A}{2[-2\phi_p]}}\right\} = \alpha$$

Variations on this form:

It is common to see $i_{D,s-t}$ written using the factors *K* and γ we defined earlier, and with kT/q replaced by V_t , the thermal voltage, and [n - 1]replaced in the pre-factor. Written this way, we have:

$$i_{D,s-t}(v_{GS}, v_{DS}, 0) \approx K V_t^2 \frac{\gamma}{2\sqrt{\left[-2\phi_p\right]}} e^{\{v_{GS}-V_T\}/nV_t} \left(1 - e^{-v_{DS}/V_t}\right)$$

with

$$\gamma = \frac{\sqrt{2\varepsilon_{si}qN_A}}{C_{ox}^*}, \quad K = \frac{W}{L}\mu_e C_{ox}^*, \quad n(v_{BS}) \approx \left\{1 + \frac{\gamma}{2\sqrt{\left[-2\phi_p - v_{BS}\right]}}\right\}$$

Clif Fonstad, 10/27/09

^J Lecture 13 - Slide 4

Sub-threshold Output Characteristic

- We plot a family of i_D vs v_{DS} curves with (v_{GS} - V_T) as the family variable, after first defining the sub-threshold diode saturation current, I_{S,s-t}: $I_{S,s-t} = K V_t^2 \frac{\gamma}{2\sqrt{\left[-2\phi_n\right]}} = K V_t^2 [n-1]$ $\text{log i}_{\text{D,s-t}}$ $(v_{GS}-V_T) = -0.06 \times n \text{ Volts}$ 10⁻¹ I_{S,s-t} $(v_{GS}-V_{T}) = -0.12xn$ Volts 10⁻² I_{S,s-t} $(v_{GS}-V_{T}) = -0.18 \times n \text{ Volts}$ 10⁻³ I_{S,s-t} $(v_{GS}-V_T) = -0.24xn$ Volts 10⁻⁴ I_{S,s-t} → V_{DS} $i_{D,s-t}(v_{GS},v_{DS},0) \approx I_{S,s-t}e^{\{v_{GS}-V_T\}/nV_t} (1-e^{-v_{DS}/V_t})$

Large Signal Model for MOSFET Operating Sub-threshold

- The large signal model for a MOSFET operating in the weak inversion or sub-threshold region looks the same model as that for a device operating in strong inversion ($v_{GS} > V_T$) EXCEPT there is a different equation relating i_D to v_{GS} , v_{DS} , and v_{BS} :

We will limit our model to $v_{GS} \le V_T$, $v_{DS} > 3V_t$ and $v_{BS} = 0$.

Large signal models with charge stores:

q_{AB}: Excess carriers on p-side plus excess carriers on n-side plus junction depletion charge.

q_{BE}: Excess carriers in base plus
 E-B junction depletion charge
 q_{BC}: C-B junction depletion charge

- **q**_G: Gate charge; a function of v_{GS} , v_{DS} , and v_{BS} .
- \mathbf{q}_{DB} : D-B junction depletion charge
- **q**_{SB}: S-B junction depletion charge

Signal notation:

- A transistor circuit, whether digital or analog, is typically connected to several DC power supplies that establish the desired DC "bias" currents and voltages throughout it. It also typically has one or more time varying input signals that result in time varying currents and voltages (one of which is the desired output of the circuit) being added to the DC bias currents and voltages.
- Each voltage and current in such a circuit thus has a DC bias portion and a signal portion, which add to make the total. We use the following notation to identify these components and the total:

$$i_{A}(t) = I_{A} + i_{a}(t)$$

$$v_{AB}(t) = V_{AB} + v_{ab}(t)$$
Total: lower-case
letter and upper-
case subscript.
Bias: upper-case
letter and subscript.
Signal: lower-case
letter and subscript.

DC Bias Values:

- To construct linear amplifiers and other linear signal processing circuits from non-linear electronic devices we must use regions in the non-linear characteristics that are locally linear over useful current and voltage ranges, and operate there.
- To accomplish this we must design the circuit so that the DC voltages and currents throughout it "bias" all the devices in the circuit into their desired regions, e.g. yield the proper bias currents and voltages:

 I_A, I_B, I_C, I_D , etc. and $V_{AG}, V_{BG}, V_{CG}, V_{DG}$, etc.

This design is done with the signal inputs set to zero and using the <u>large signal static device models</u> we have developed for the non-linear devices we studied: diodes, BJTs, MOSFETs.
Working with these models to get the bias values, though not onerous, can be tedious. It is not something we want to have to do to find voltages and currents when the signal inputs are applied. Instead we use <u>linear equivalent circuits</u>.

Linear equivalent circuits:

- After biasing each non-linear devices at the proper point the signal currents and voltages throughout the circuit will be linearly related for small enough input signals. To calculate how they are related, we make use of the <u>linear equivalent</u> <u>circuit</u> (LEC) of our circuit.
- The LEC of any circuit is a combination of linear circuit elements (resistors, capacitors, inductors, and dependent sources) that correctly models and predicts the first-order changes in the currents and voltages throughout the circuit when the input signals change.
- A circuit model that represents the proper first order linear relationships between the signal currents and voltages in a non-linear device is call an LEC for that device.
- Our next objective is to develop LECs for each of the nonlinear devices we have studied: diodes, BJTs biased in their forward active region (FAR), and MOSFETs biased in their sub-threshold and strong inversion FARs.

Creating a linear equivalent circuit, LEC:

Consider a device with three terminals, X, Y, and Z:

Suppose, as is our situation with the large signal device models we have developed in 6.012, that we have expressions for the currents into terminals X and Y in terms of the voltages v_{XZ} and v_{YZ} : $i_X(v_{YZ}, v_{YZ})$ and $i_Y(v_{YZ}, v_{YZ})$

and that we similarly have expressions for the charge stores associated with terminals X and Y:

$$q_X(v_{XZ}, v_{YZ})$$
 and $q_Y(v_{XZ}, v_{YZ})$

Clif Fonstad, 10/27/09

We begin with our <u>static model</u> expressions for the terminal characteristics, and write a Taylor's series expansion of them about a bias point, Q, defined as a specific set of v_{XZ} and v_{YZ} that we write, using our notation, as V_{XZ} and V_{YZ}

For example, for the current into terminal X we have:

$$i_{X}(v_{XZ}, v_{YZ}) = i_{X}(V_{XZ}, V_{YZ}) + \frac{\partial i_{X}}{\partial v_{XZ}} \bigg|_{Q} (v_{XZ} - V_{XZ}) + \frac{\partial i_{X}}{\partial v_{YZ}} \bigg|_{Q} (v_{YZ} - V_{YZ}) + \frac{1}{2} \frac{\partial^{2} i_{X}}{\partial v_{XZ}^{2}} \bigg|_{Q} (v_{XZ} - V_{XZ})^{2}$$
$$+ \frac{1}{2} \frac{\partial^{2} i_{X}}{\partial v_{YZ}^{2}} \bigg|_{Q} (v_{YZ} - V_{YZ})^{2} + \frac{1}{2} \frac{\partial^{2} i_{X}}{\partial v_{XZ} \partial v_{YZ}} \bigg|_{Q} (v_{XZ} - V_{XZ}) (v_{YZ} - V_{YZ}) + \text{ even higher order terms}$$

For sufficiently small* $(v_{xz}-V_{xz})$ and $(v_{yz}-V_{yz})$, the second and higher order terms are negligible, and we have:

$$i_{X}(v_{XZ}, v_{YZ}) \approx \underbrace{i_{X}(V_{XZ}, V_{YZ})}_{q} + \frac{\partial i_{X}}{\partial v_{XZ}} \bigg|_{Q} \underbrace{(v_{XZ} - V_{XZ})}_{Q} + \frac{\partial i_{X}}{\partial v_{YZ}} \bigg|_{Q} \underbrace{(v_{YZ} - V_{YZ})}_{q}$$

$$i_{X}(V_{XZ}, V_{YZ}) = I_{X}(V_{XZ}, V_{YZ}) \qquad \begin{bmatrix} v_{XZ} - V_{XZ} \end{bmatrix} \equiv v_{xZ} \qquad \begin{bmatrix} v_{YZ} - V_{YZ} \end{bmatrix} \equiv v_{yZ}$$

Clif Fonstad, 10/27/09

Lecture 13 - Slide 12

* What is "sufficiently small" is determined by the magnitude of the higher order derivatives.

So far we have:

$$i_{X}(v_{XZ}, v_{YZ}) - I_{X}(V_{XZ}, V_{YZ}) \approx \frac{\partial i_{X}}{\partial v_{XZ}} \Big|_{Q} v_{xz} + \frac{\partial i_{X}}{\partial v_{YZ}} \Big|_{Q} v_{yz}$$
Next we define:

$$\begin{bmatrix} i_{X} - I_{X} \end{bmatrix} = i_{x} \qquad \frac{\partial i_{X}}{\partial v_{XZ}} \Big|_{Q} = g_{i} \qquad \frac{\partial i_{X}}{\partial v_{YZ}} \Big|_{Q} = g_{r}$$

Replacing the partial derivatives with the conductances we have defined, gives us our working form of the linear equation relating the incremental variables:

$$i_x \approx g_i v_{xz} + g_r v_{yz}$$

Doing the same for i_{γ} , we arrive at

$$\begin{bmatrix} i_y \approx g_f v_{xz} + g_o v_{yz} \end{bmatrix} \text{ where } g_f \equiv \frac{\partial i_Y}{\partial v_{XZ}} \Big|_Q \qquad g_o \equiv \frac{\partial i_Y}{\partial v_{YZ}} \Big|_Q$$

A circuit matching these relationships is seen below:

Clif Fonstad, 10/27/09

This linear equivalent circuit is only good at low frequencies:

To handle <u>high frequency signals</u>, we linearize the charge stores' dependencies on voltage also.

Their LECs are linear capacitors:

$$\frac{\partial q_X}{\partial v_{XZ}}\Big|_Q \equiv C_{xz} \qquad \frac{\partial q_Y}{\partial v_{YZ}}\Big|_Q \equiv C_{yz} \qquad \frac{\partial q_X}{\partial v_{XY}}\Big|_Q \equiv C_{xy} \left(=\frac{\partial q_Y}{\partial v_{YX}}\Big|_Q\right)$$

Clif Fonstad, 10/27/09

Adding these to the model yields:

Two important points:

#1 - All of the elements in this LEC depend on the bias point, Q:

$$g_{i} = \frac{\partial i_{X}}{\partial v_{XZ}}\Big|_{Q}, \quad g_{r} = \frac{\partial i_{X}}{\partial v_{YZ}}\Big|_{Q}, \quad g_{f} = \frac{\partial i_{Y}}{\partial v_{XZ}}\Big|_{Q}, \quad g_{o} = \frac{\partial i_{Y}}{\partial v_{YZ}}\Big|_{Q}, \quad C_{xz} = \frac{\partial q_{X}}{\partial v_{XZ}}\Big|_{Q}, \quad C_{xy} = \frac{\partial q_{X}}{\partial v_{XY}}\Big|_{Q}, \quad C_{yz} = \frac{\partial q_{Y}}{\partial v_{YZ}}\Big|_{Q}$$

#2 - The device-specific nature of an LEC is manifested in the dependences of the element values on the bias currents and voltages, rather than in the topology of the LEC. Thus, different devices may have LECs that look the same. (For example, the BJ and FET LECs may look similar, but some of the elements depend much differently on the bias point values.)

Clif Fonstad, 10/27/09

Linear equivalent circuit (LEC) for <u>p-n diodes</u> (low f):

We begin with the static model for the terminal characteristics: $i_D(v_{AB}) = I_S \left[e^{q v_{AB}/kT} - 1 \right]$

Linearizing i_D about V_{AB}, which we will denote by Q (for quiescent bias point):

_ Λ

$$i_D(v_{AB}) \approx i_D(V_{AB}) + \frac{\partial i_D}{\partial v_{AB}} \bigg|_Q [v_{AB} - V_{AB}]$$

We define the equivalent incremental conductance of the diode, g_d,

$$g_{d} = \frac{\partial i_{D}}{\partial v_{AB}} \bigg|_{Q} = \frac{q}{kT} I_{S} e^{q V_{AB} / kT} \approx \frac{q I_{D}}{kT}$$

and we use our notation to write:

$$I_D = i_D(V_{AB}),$$
 $i_d = [i_D - I_D],$ $v_{ab} = [v_{AB} - V_{AB}]$
ending up with $i_d = g_d v_{ab}$

The corresponding LEC is shown at right:

Clif Fonstad, 10/27/09

LEC for <u>p-n diodes</u> (high f):

 $C_{dp}(V_{AB}) \equiv \left. \frac{\partial q_{DP}}{\partial v_{AB}} \right|_{c} = A_{1} \left| \frac{q \varepsilon_{Si} N_{Ap}}{2(\phi_{I} - V_{AB})} \right|_{c}$

equivalent capacitance, C_{df}:

 $q_{QNR,p-side}(v_{AB}) = \frac{i_D \left[w_p - x_p\right]^2}{2D}$

At high frequencies we must include the charge store, q_{AB}, and linearize its two components*:

$$q_{AB} = q_{DP} + q_{QNR,p-side}$$

<u>Depletion layer charge store</u>, q_{DP}, and its linear equivalent capacitance, C_{dp}:

$$q_{DP}(v_{AB}) = -AqN_{Ap}x_{p}(v_{AB}) \approx -A\sqrt{2q\varepsilon_{Si}N_{Ap}(\phi_{b}-v_{AB})}$$

<u>Diffusion charge store</u>, q_{QNR,p-side}, and its linear

$$C_{df}(V_{AB}) = \left. \frac{\partial q_{QNR,p-side}}{\partial v_{AB}} \right|_{Q} = \frac{q I_{D}}{kT} \frac{\left[w_{p} - x_{p} \right]^{2}}{2D_{e}} = g_{d} \tau_{d} \quad \text{with} \quad \tau_{d} = \frac{\left[w_{p} - x_{p} \right]^{2}}{2D_{e}}$$

Clif Fonstad, 10/27/09

* This discusion assumes an n⁺-p diode)

Linear equivalent circuit for **BJTs in FAR** (low f):

In the forward active region, our static model says:

$$i_{B}(v_{BE}, v_{CE}) = I_{BS} \left[e^{qv_{BE}/kT} - 1 \right]$$

$$i_{C}(v_{BE}, v_{CE}) = \beta_{o} \left[1 + \lambda v_{CE} \right] i_{B}(v_{BE}, v_{CE}) = \beta_{o} I_{BS} \left[e^{qv_{BE}/kT} - 1 \right] \left[1 + \lambda v_{CE} \right]$$

We begin by linearizing i_c about Q:

$$i_{c}(v_{be}, v_{ce}) = \frac{\partial i_{C}}{\partial v_{BE}} \bigg|_{Q} v_{be} + \frac{\partial i_{C}}{\partial v_{CE}} \bigg|_{Q} v_{ce} = g_{m} v_{be} + g_{o} v_{ce}$$

We introduced the transconductance, g_m , and the output conductance, g_o , defined as:

$$g_m = \frac{\partial i_C}{\partial v_{BE}}\Big|_Q \qquad \qquad g_o = \frac{\partial i_C}{\partial v_{CE}}\Big|_Q$$

Evaluating these partial derivatives using our expression for i_c, we find:

$$\underline{g_m} = \frac{q}{kT} \beta_o I_{BS} e^{qV_{BE}/kT} \left[1 + \lambda V_{CE}\right] \approx \frac{qI_C}{kT}$$

$$\underline{g_o} = \beta_o I_{BS} \left[e^{qV_{BE}/kT} + 1\right] \lambda \approx \lambda I_C \quad \left(\text{or} \approx \frac{I_C}{V_A}\right)$$

Clif Fonstad, 10/27/09

LEC for <u>BJTs</u> (low f), cont.:

Turning next to i_B , we note it only depends on v_{BE} so we have:

$$\dot{i}_b(v_{be}) = \frac{\partial \dot{i}_B}{\partial v_{BE}}\Big|_Q v_{be} = g_\pi v_{be}$$

 $g_{\pi} \equiv$

The input conductance, g_{π} , is defined as:

$$\frac{\partial i_B}{\partial v_{BE}}\Big|_Q$$
 (Notice that we do not
define g_{π} as ql_B/kT)

To evaluate g_{π} we do not use our expression for i_B , but instead use $i_B = i_C/\beta_o$:

$$\underline{g_{\pi}} \equiv \frac{\partial i_B}{\partial v_{BE}} \bigg|_{Q} = \left. \frac{1}{\beta_o} \frac{\partial i_C}{\partial v_{BE}} \right|_{Q} = \left. \frac{g_m}{\beta_o} \right|_{Q} = \left. \frac{q I_C}{kT \beta_o} \right|_{Q}$$

Representing this as a circuit we have:

(Notice that v_{be} is also called v_{π})

LEC for <u>BJTs</u> (high f):

To extend the model to high frequency we linearize the charge stores associated with the junctions and add them.

The <u>base-collector junction</u> is reverse biased so the charge associated with it, q_{BC} , is the depletion region charge. The corresponding capacitance is labeled C_u .

$$q_{BC}(v_{BC}) \approx -A \sqrt{2q\varepsilon_{Si} \left[\phi_{b,BC} - v_{BC}\right] N_{DC}} \qquad C_{\mu}(V_{BC}) = \frac{\partial q_{BC}}{\partial v_{BC}} \bigg|_{Q} = A \sqrt{\frac{q\varepsilon_{Si} N_{DC}}{2[\phi_{b} - V_{BC}]}}$$

The <u>base-emitter junction</u> is forward biased and its dominant charge store is the excess charge injected into the base; the base-emitter depletion charge store less important.

$$q_{BE}(v_{BE}) \approx Aqn_i^2 \frac{D_e}{N_{AB}w_{B,eff}} \left[e^{qV_{BE}/kT} - 1 \right] \approx \frac{w_{B,eff}^2}{2D_e} i_C(v_{BE})$$

The linear equivalent capacitance is labeled C_{π} .

Clif Fonstad, 10/27/09

LEC for <u>BJTs</u> (high f), cont:

 C_{π} can be written in terms of g_m and τ_b :

$$C_{\pi}(V_{BE}) = \frac{\partial q_{BE}}{\partial v_{BE}} \bigg|_{Q} \approx \left. \frac{w_{B,eff}^{2}}{2D_{e}} \frac{qI_{C}}{kT} = g_{m}\tau_{b} \right. \qquad \tau_{b} = \frac{w_{B,eff}^{2}}{2D_{e}}$$

LEC for <u>MOSFETs in saturation</u> (low f):

In saturation, our static model is: $i_G(v_{GS}, v_{DS}, v_{BS}) = 0$ $i_B(v_{GS}, v_{DS}, v_{BS}) \approx 0$ $i_D(v_{GS}, v_{DS}, v_{BS}) = \frac{K}{2\alpha} [v_{GS} - V_T(v_{BS})]^2 [1 + \lambda (v_{DS} - V_{DS,sat})]$ with $K = \frac{W}{L} \mu_e C_{ox}^*$ and $V_T = V_{To} + \gamma (\sqrt{|2\phi_{p-Si}| - v_{BS}} - \sqrt{|2\phi_{p-Si}|})$

Note that because i_G and i_B are zero they are already linear, and we can focus on i_D . Linearizing i_D about Q we have:

$$i_{d}(v_{gs}, v_{ds}, v_{bs}) = \frac{\partial i_{D}}{\partial v_{GS}} \bigg|_{Q} v_{gs} + \frac{\partial i_{D}}{\partial v_{DS}} \bigg|_{Q} v_{ds} + \frac{\partial i_{D}}{\partial v_{BS}} \bigg|_{Q} v_{bs}$$

$$= g_m v_{gs} + g_o v_{ds} + g_{mb} v_{bs}$$

We have introduced the transconductance, g_m, output conductance, g_o, and substrate transconductance, g_{mb}:

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}}\Big|_{Q} \qquad \qquad g_{o} = \frac{\partial i_{D}}{\partial v_{DS}}\Big|_{Q} \qquad \qquad g_{mb} = \frac{\partial i_{D}}{\partial v_{BS}}\Big|_{Q}$$

Clif Fonstad, 10/27/09

LEC for MOSFETs in saturation (low f), cont.:

A circuit containing all these elements, i.e. the actual LEC, is:

Evaluating the conductances in saturation we find:

$$\underline{g_m} = \frac{\partial i_D}{\partial v_{GS}} \bigg|_Q = \frac{K}{\alpha} \Big[V_{GS} - V_T (V_{BS}) \Big] \Big[1 + \lambda V_{DS} \Big] \approx \sqrt{2K I_D / \alpha}$$

$$\underline{g_o} = \frac{\partial i_D}{\partial v_{DS}} \bigg|_Q = \frac{K}{2\alpha} \Big[V_{GS} - V_T (V_{BS}) \Big]^2 \lambda \approx \lambda I_D$$

$$\underline{g_{mb}} = \frac{\partial i_D}{\partial v_{BS}} \bigg|_Q = -\frac{K}{\alpha} \Big[V_{GS} - V_T (V_{BS}) \Big] \Big[1 + \lambda V_{DS} \Big] \frac{\partial V_T}{\partial v_{BS}} \bigg|_Q = \eta g_m$$

Clif Fonstad, 10/27/09

LEC for <u>MOSFETs in saturation</u> (high f):

- For the high frequency model we linearize and add the charge stores associated with each pair of terminals.
- Two, q_{SB} and q_{DB} , are <u>depletion</u> region charge stores associated with the n+ regions of the source and drain. They are relatively straightforward compared to $q_{G'}$, as

straightforward compared to q_G , as we will see below. q_{SB} and q_{DB} contribute two capacitors, C_{sb} and C_{db} , to our LEC.

The <u>gate charge</u>, q_G, depends in general on v_{GS}, v_{DS}, and v_{GB} (= v_{GS}-v_{BS}), but in saturation, q_G only depends on v_{GS} and v_{GB} (i.e. v_{GS} and v_{BS}) in our model, adding C_{gs} and C_{gb}. When v_{GS} \geq V_T the drain is ideally decoupled from the gate , but in any real device there is fringing capacitance between the gate electrode and the drain diffusion that we must include as C_{ad}, a parasitic element.

LEC for MOSFETs in saturation (high f), cont.:

Adding all these capacitors to our LEC yields:

We find the following results:

 $C_{gs} = \frac{\partial q_G}{\partial v_{GS}}\Big|_Q = \frac{2}{3}WLC_{ox}^* \qquad C_{gd} = WC_{gd}^*, \text{ where } C_{gd}^* \text{ is the G-D fringing and overlap capacitance per unit gate length (parasitic)}$

 C_{sb}, C_{gb}, C_{db} : depletion capacitances

$$g_m \approx \sqrt{2KI_D/\alpha}$$
 $g_o \approx \lambda I_D$ $g_{mb} = \eta g_m$, where $\eta = \gamma/2\sqrt{|2\phi_p| - V_{BS}}$

Clif Fonstad, 10/27/09

LEC for <u>MOSFETs in saturation</u> when $v_{bs} = 0$:

A very common situation in many circuits is that there is no signal applied between on the base, i.e. $v_{bs} = 0$ (even though it may be biased relative to the source, $V_{BS} \neq 0$). In this case the MOSFET LEC simplifies significantly:

The elements that remain retain their original dependences:

 $g_m \approx \sqrt{2KI_D}/\alpha \qquad g_o \approx \lambda I_D$ $C_{gs} \equiv \frac{\partial q_G}{\partial v_{GS}}\Big|_Q = \frac{2}{3}WLC_{ox}^* \qquad C_{gd} = WC_{gd}^*, \text{ where } C_{gd}^* \text{ is the G-D fringing and overlap capacitance per unit gate length (parasitic)}$

 C_{db} : depletion capacitance

Clif Fonstad, 10/27/09

LEC for <u>Sub-threshold MOSFETs</u>, v_{BS} = 0:

Our large signal model for MOSFETs operated in the subthreshold FAR ($v_{DS} >> kT/q$) and $v_{BS} = 0$, is:

$$\begin{array}{c} \mathbf{G} \frown \mathbf{v}_{GS}, \mathbf{v}_{DS} \end{pmatrix} \qquad i_{G,s-t}(v_{GS}, v_{DS}, v_{BS}) = 0 \\ \mathbf{i}_{G} (= 0) \qquad \qquad i_{D,s-t}(v_{GS}, v_{DS}) \approx I_{S,s-t} (1 - \lambda v_{DS}) e^{\{v_{GS} - V_{To}\}/nV_{t}} \\ \mathbf{S}, \mathbf{B} \circ \end{array}$$

Like a MOSFET in saturation with $v_{bs} = 0$, the LEC has only two elements, g_m and g_o , but now g_m is quite different:

$$g_{m} = \frac{\partial i_{D}}{\partial v_{GS}}\Big|_{Q} = \frac{q}{nkT}I_{S,s-t}(1-\lambda V_{DS})e^{q(V_{GS}-V_{to})/nkT} = \frac{qI_{D}}{nkT}$$
$$g_{o} = \frac{\partial i_{D}}{\partial v_{DS}}\Big|_{Q} = \lambda I_{S,s-t}e^{q(V_{GS}-V_{to})/nkT} \approx \lambda I_{D} \quad \left(\text{or} \quad \approx \frac{I_{D}}{V_{A}}\right)$$

Clif Fonstad, 10/27/09

LEC for <u>Sub-threshold MOSFETs</u>, v_{BS} = 0, cont.:

The LEC for MOSFETs in sub-threshold FAR ($v_{DS} >> kT/q$) and $v_{BS} = 0$, is:

as q_{DB} in a MOSFETs operated in strong inversion, but g_G is not. g_G is the gate capacitance in depletion ($V_{FB} < v_{GB} < V_T$), so it is smaller in sub-threshold.

Clif Fonstad, 10/27/09

LEC for <u>Sub-threshold MOSFETs</u>, v_{BS} = 0, cont.:

Adding the linear capacitors corresponding to the charge stores we have:

 $C_{gd} = W C_{gd}^*$, where C_{gd}^* is the G-D fringing and overlap

 C_{db} : depletion capacitance $g_m = \frac{qI_D}{nkT}$ $g_o \approx \lambda I_D$

Notice that as before, C_{gd} is zero in our ideal model. It a parasitic that cannot be avoided and must be included because it limits device and circuit performance.

Clif Fonstad, 10/27/09

Comparing the low frequency LECs:

All of our circuit design will be done for operation at "low" frequencies, that is where the charge store capacitances play a negligible role. Thus it is interesting to compare our three transistor LECs when this is true. They all have the same topology, but differ importantly in g_i and g_m :

We will say more about the significance of thes differences when we study amplifier design.

Lecture 13 - Slide 30

The importance of the bias current:

A very important observation is that all of the elements in the three LECs we compared depend on the bias level of the output current, I_c , in the case of a BJT, or I_D , in the case of a MOSFET:

The bias circuitry is a key part of any linear amplifier. The designer must establish a stable bias point for all the transistors in the amplifier to insure that the gain remains constant and stable.

We will study amplifier design and practice beginning with Lecture 17.

6.012 - Microelectronic Devices and Circuits

Lecture 13 - Linear Equivalent Circuits - Summary

• Reminder

Exam Two - In ~1 wk., Thursday, Nov. 5, 7:30-9:30 p.m. **Sub-Threshold Refs -** Lecture 12 slides; Sub-threshold write-up

Notation

Total = Bias + Signal

 $i_A(t) = I_A + i_a(t)$ $v_{AB}(t) = V_{AB} + v_{ab}(t)$

Large signal model - Design and analysis of bias conditions Linear equivalent circuits - Signal portion design/analysis

• Small signal models; linear equivalent circuits

Everything depends on the bias point - The value of each element in an LEC depends on the bias point (often the bias current).

Concentrate for now on low frequency LECs - Full spectrum LECs with capacitors will only be used to find the upper bound on the low frequency range of operation. We won't see them again until Lecture 23.

6.012 Microelectronic Devices and Circuits Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.