6.012 - Microelectronic Devices and Circuits Lecture 15 - Digital Circuits: CMOS - Outline

• Announcements

One supplemental reading on Stellar Exam 2 - Thursday night, Nov. 5, 7:30-9:30

• **Review -** Inverter performance metrics

Transfer characteristic: logic levels and noise margins

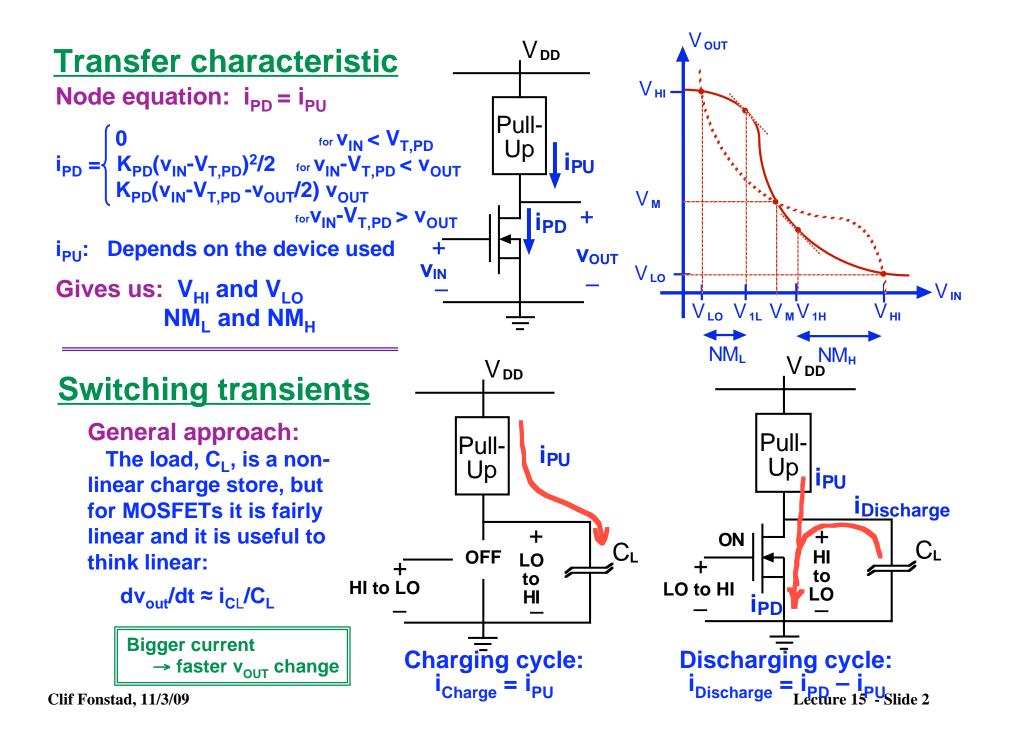
Power: $P_{ave, static} + P_{ave, dynamic}$ (= $I_{ON}V_{DD}/2 + f C_L V_{DD}^2$)Switching speed: charge thru pull-up, discharge thru pull-downIf can model load as linear C: $dv_{OUT}/dt = i_{CH}(v_{OUT})/C_L$; = $i_{DCH}(v_{OUT})/C_L$ If can say i_{CH} , i_{DCH} constant: $\tau_{HI-LO} = C_L(V_{HI}-V_{LO})/I_{CH}$; $\tau_{HI-LO} = C_L(V_{HI}-V_{LO})/I_{DCH}$ Fan-out, fan-in(often only 10 to 90% swings)Manufacturability

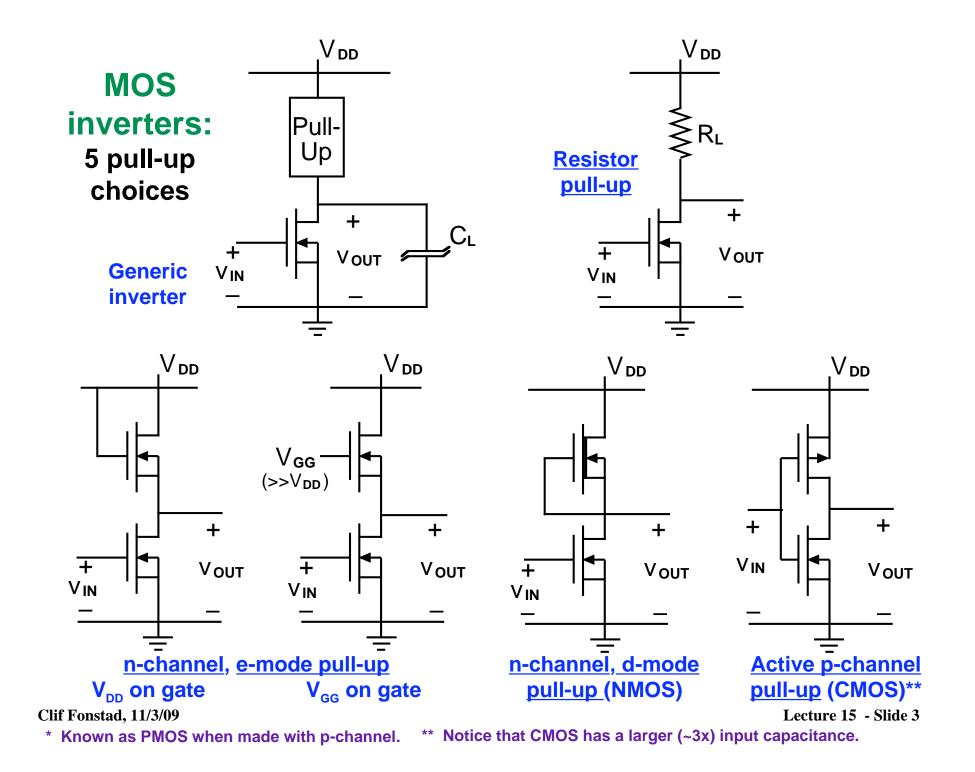
• CMOS

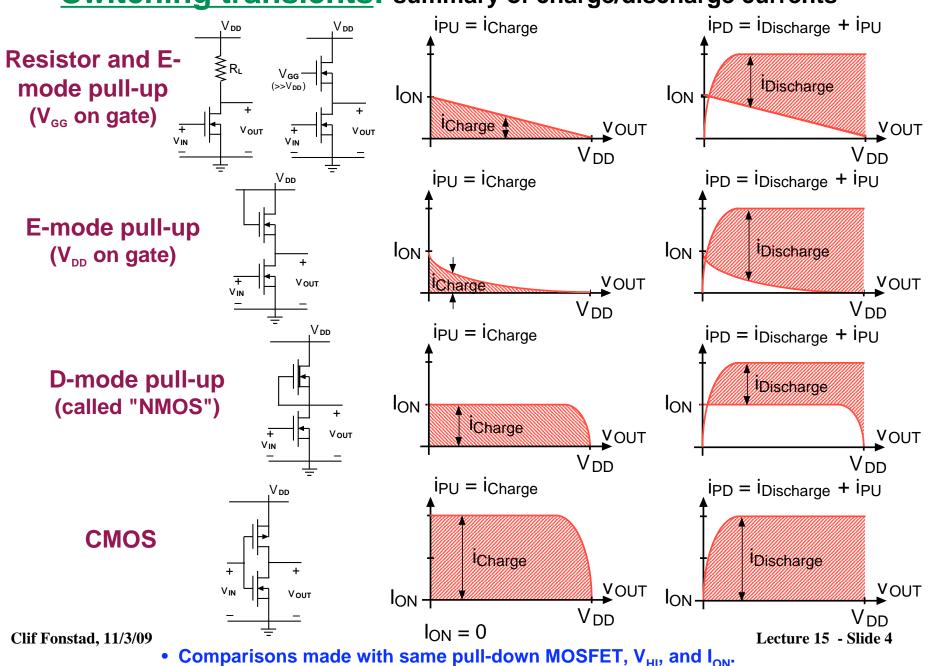
Transfer characteristic Gate delay expressions Power and speed-power product

Velocity Saturation

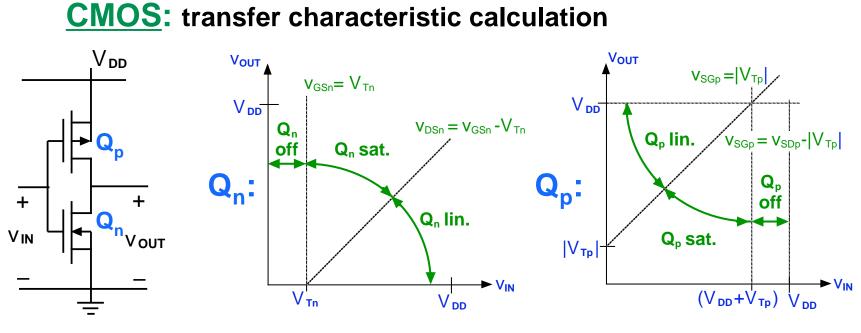
General comments Impact on MOSFET and Inverter Characteristics

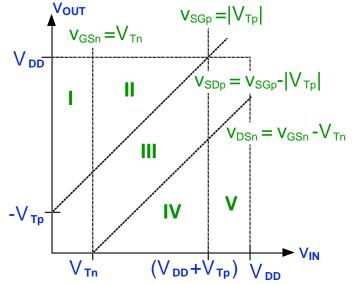






Switching transients: summary of charge/discharge currents





Transistor operating condition in each region:

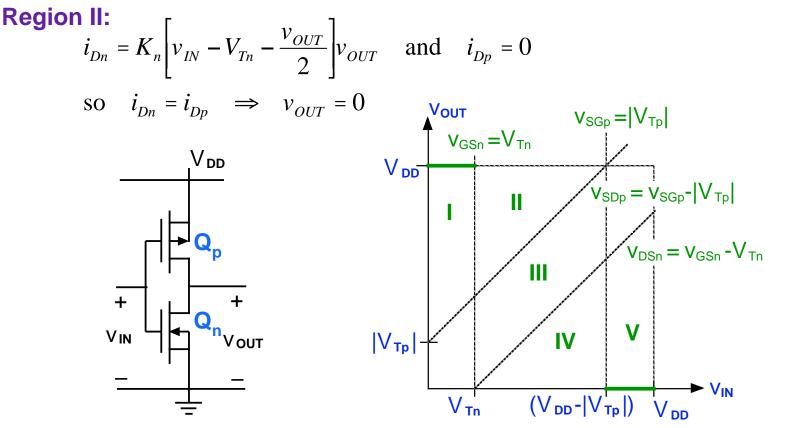
Region	Q _n	Q _p
1	cut-off	linear
11	saturation	linear
III	saturation	saturation
IV	linear	saturation
V	linear	cut-off

Clif Fonstad, 11/3/09

<u>CMOS</u>: transfer characteristic calculation, cont.

Region I:

$$i_{Dn} = 0$$
 and $i_{Dp} = K_p \left[V_{DD} - v_{IN} - |V_{Tp}| - \frac{(V_{DD} - v_{OUT})}{2} \right] (V_{DD} - v_{OUT})$
so $i_{Dn} = i_{Dp} \implies v_{OUT} = V_{DD}$

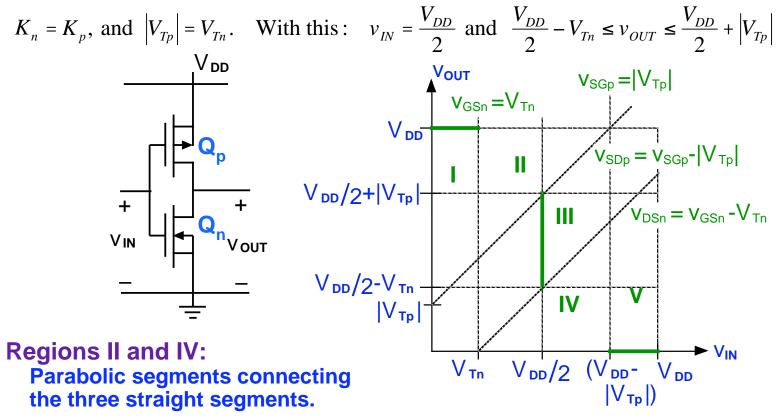


Clif Fonstad, 11/3/09

<u>CMOS</u>: transfer characteristic calculation, cont. Region III:

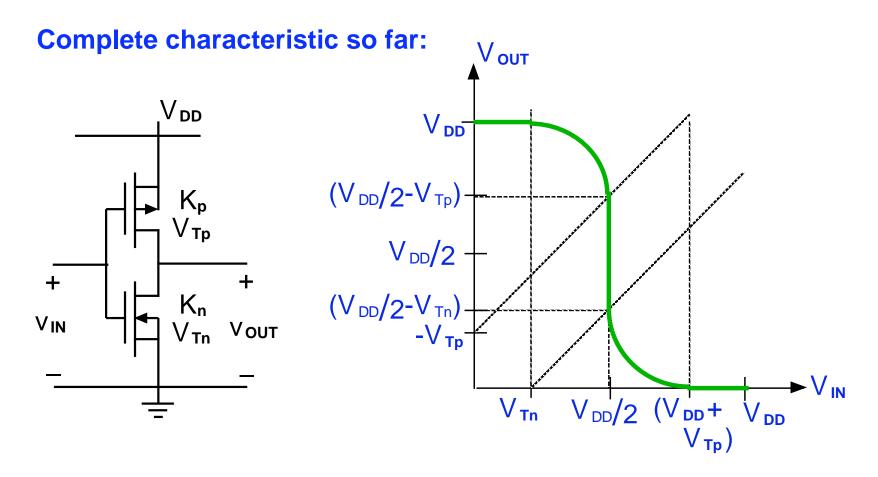
$$i_{Dn} = \frac{K_n}{2} [\mathbf{v}_{\mathrm{IN}} - V_{Tn}]^2 \quad \text{and} \quad i_{Dp} = \frac{K_p}{2} [\mathbf{V}_{\mathrm{DD}} - \mathbf{v}_{\mathrm{IN}} - |V_{Tp}|]^2$$

so $i_{Dn} = i_{Dp} \implies v_{IN} = \frac{V_{DD} - |V_{Tp}| + V_{Tn}\sqrt{K_n/K_p}}{1 + \sqrt{K_n/K_p}}.$ To achieve symmetry we make



Clif Fonstad, 11/3/09

<u>CMOS</u>: transfer characteristic calculation, cont.



NOTE: We design CMOS inverters to have $K_n = K_p$ and $V_{Tn} = -V_{Tp}$ to obtain the optimum symmetrical characteristic.

Clif Fonstad, 11/3/09

<u>CMOS</u>: transfer characteristic calculation, cont. νουτ Our calculation says that the V_{DD} transfer characteristic is vertical in Region III. We know it must have some slope, but what is it? To see, calculate the small signal gain about the bias -V_{Tp} **point:** $V_{IN} = V_{OUT} = V_{DD}/2$ ► V_{IN} $V_{DD}/2 (V_{DD} - V_{DD})$ Vт Begin with the small signal model: |V_{тр}|) Sp V_{DD} Sp e $v_{gsp} = v_{in}$ Sgop g_{mp}v_{gsp} Qp K_p λ_p $g_p \pm$ У_{тр} dp Яn dn + + $K_n \lambda_n V_{DD}/2 + V_{out} V_{in}$ Vout $V_{gsn} = V_{in}$ $V_{DD}/2+v_{in}$ Vтn **₽**gon g_{mn}v_{gsn}

Sn

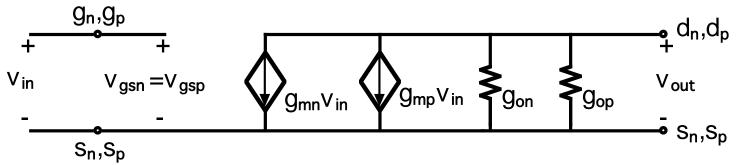
Lecture 15 - Slide 9

Sn

Clif Fonstad, 11/3/09

<u>CMOS</u>: transfer characteristic calculation, cont.

Redrawing the circuit we get



from which we see immediately

$$A_{v} \equiv \frac{\partial v_{OUT}}{\partial v_{IN}} \bigg|_{Q} = \frac{v_{out}}{v_{in}} = -\frac{\left[g_{mn} + g_{mp}\right]}{\left[g_{on} + g_{op}\right]}$$

In Lecture 13 we learned how to write the conductances in terms of the bias point as

$$g_{mn} = \sqrt{2K_n I_{Dn}}, \qquad g_{mp} = \sqrt{2K_p \left| I_{Dp} \right|} = g_{mn}, \qquad g_{on} = \lambda_n I_{Dn}, \qquad g_{op} = \lambda_p \left| I_{Dp} \right| = \lambda_p I_{Dn}$$

which will enable us to express the gain in terms of the bias point, I_{Dn} (= $/I_{Dp}$ /), and MOSFET parameters

$$A_{v} \equiv \frac{\partial v_{OUT}}{\partial v_{IN}} \bigg|_{Q} = -\frac{2\sqrt{2K_{n}I_{Dn}}}{\left[\lambda_{n} + \lambda_{p}\right]I_{Dn}} = -\frac{2\sqrt{2K_{n}}}{\left[\lambda_{n} + \lambda_{p}\right]\sqrt{I_{Dn}}}$$

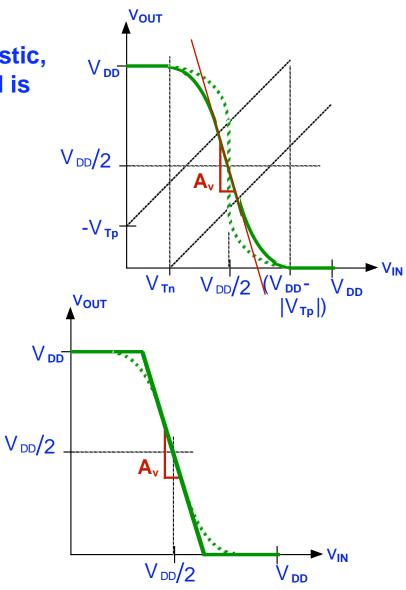
Clif Fonstad, 11/3/09

<u>CMOS</u>: transfer characteristic calculation, cont.

Returning to the transfer characteristic, we see that the slope in Region III is not infinite, but is instead:

$$A_{v} \equiv \frac{\partial v_{OUT}}{\partial v_{IN}} \bigg|_{Q} = -\frac{\left[g_{mn} + g_{mp}\right]}{\left[g_{on} + g_{op}\right]}$$

Final comment: A quick and easy way to approximate the transfer characteristic of a CMOS gate is to simply draw the three straight line portions in Regions I, III, and V:



<u>CMOS</u>: switching speed; minimum cycle time

The load capacitance: C_L

- Assume to be linear
- Is proportional to MOSFET gate area
- In channel: $\mu_e = 2\mu_h$ so to have $K_n = K_p$ we must have $W_p/L_p = 2W_n/L_n$ Typically $L_n = L_p = L_{min}$ and $W_n = W_{min}$, so we also have $W_p = 2W_{min}$

$$C_{L} \approx n \left[W_{n} L_{n} + W_{p} L_{p} \right] C_{ox}^{*} = n \left[W_{\min} L_{\min} + 2W_{\min} L_{\min} \right] C_{ox}^{*} = 3n W_{\min} L_{\min} C_{ox}^{*}$$

Charging cycle: v_{IN} : HI to LO; Q_n off, Q_p on; v_{OUT} : LO to HI • Assume charged by constant $i_{D,sat}$ $i_{Ch arge} = -i_{Dp} \approx \frac{K_p}{2} \left[V_{DD} - |V_{Tp}| \right]^2 = \frac{K_n}{2} \left[V_{DD} - V_{Tn} \right]^2$ $q_{Ch arge} = C_L V_{DD}$ $\tau_{Ch arge} = \frac{q_{Ch arge}}{i_{Ch arge}} = \frac{2C_L V_{DD}}{K_n [V_{DD} - V_{Tn}]^2}$ $= \frac{6nW_{min}L_{min}C_{ox}^*V_{DD}}{\frac{W_{min}}{L_{min}}\mu_e C_{ox}^* [V_{DD} - V_{Tn}]^2} = \frac{6nL_{min}^2 V_{DD}}{\mu_e [V_{DD} - V_{Tn}]^2}$ Clif Fonstad, 11/3/09

<u>CMOS</u>: switching speed; minimum cycle time, cont.

Discharging cycle: v_{IN} : LO to HI; Q_n on, Q_p off; v_{OUT} : HI to LO • Assume discharged by constant $i_{D,sat}$ $i_{Disch arge} = i_{Dn} \approx \frac{K_n}{2} [V_{DD} - V_{Tn}]^2$ $q_{Disch arge} = C_L V_{DD}$ $\tau_{Disch arge} = \frac{q_{Disch arge}}{i_{Disch arge}} = \frac{2C_L V_{DD}}{K_n [V_{DD} - V_{Tn}]^2}$ $= \frac{6nW_{min}L_{min}C_{ox}^*V_{DD}}{\frac{W_{min}}{L_{min}}\mu_e C_{ox}^* [V_{DD} - V_{Tn}]^2} = \frac{6nL_{min}^2 V_{DD}}{\mu_e [V_{DD} - V_{Tn}]^2}$

 $\frac{\text{Minimum cycle time:}}{\tau_{Min.Cycle}} = \tau_{Ch \operatorname{arg} e} + \tau_{Disch \operatorname{arg} e} = \frac{12nL_{\min}^2 V_{DD}}{\mu_e [V_{DD} - V_{Tn}]^2}$

Lecture 15 - Slide 13

Clif Fonstad, 11/3/09

<u>CMOS</u>: switching speed; minimum cycle time, cont.

Discharging and Charging times:

What do the expressions tell us? We have

$$\tau_{Min\,Cycle} = \frac{12nL_{\min}^2 V_{DD}}{\mu_e \left[V_{DD} - V_{Tn} \right]^2}$$

This can be written as:

$$\tau_{MinCycle} = \frac{12nV_{DD}}{\left(V_{DD} - V_{Tn}\right)} \cdot \frac{L_{\min}}{\mu_{e} \left(V_{DD} - V_{Tn}\right) / L_{\min}}$$

The last term is the channel transit time:

$$\frac{L_{\min}}{\mu_e \left(V_{DD} - V_{Tn}\right)/L_{\min}} = \frac{L_{\min}}{\mu_e E_{Ch}} = \frac{L_{\min}}{\overline{s}_{e,Ch}} = \tau_{Ch\,Transit}$$

Thus the gate delay is a multiple of the channel transit time:

$$\tau_{MinCycle} = \frac{12nV_{DD}}{\left(V_{DD} - V_{Tn}\right)} \tau_{ChannelTransit} = n' \tau_{ChannelTransit}$$

Clif Fonstad, 11/3/09

<u>CMOS</u>: power dissipation - total and per unit area

Average power dissipation

All dynamic

$$P_{dyn,ave} = E_{Dissipated percycle} f = C_L V_{DD}^2 = 3n W_{min} L_{min} C_{ox}^* V_{DD}^2 f$$

Power at maximum data rate

Maximum f will be $1/\tau_{\text{Gate Delay Min.}}$

$$P_{dyn @ f_{max}} = \frac{3nW_{min}L_{min}C_{ox}^*V_{DD}^2}{\tau_{Min.Cycle}} = 3nW_{min}L_{min}C_{ox}^*V_{DD}^2 \cdot \frac{\mu_e [V_{DD} - V_{Tn}]^2}{12nL_{min}^2V_{DD}}$$
$$= \frac{1}{4}\frac{W_{min}}{L_{min}}\mu_e C_{ox}^*V_{DD} [V_{DD} - V_{Tn}]^2$$

<u>Power density at maximum data rate</u> Assume that the area per inverter is proportional to W_{min}L_{min}

$$PD_{dyn @ f_{max}} = \frac{P_{dyn @ f_{max}}}{\text{InverterArea}} \propto \frac{P_{dyn @ f_{max}}}{W_{\min}L_{\min}} = \frac{\mu_e C_{ox}^* V_{DD} [V_{DD} - V_{Tn}]^2}{L_{\min}^2}$$

Clif Fonstad, 11/3/09

<u>CMOS</u>: design for high speed

Maximum data rate

Proportional to $1/\tau_{Min Cycle}$

$$\tau_{Min.Cycle} = \tau_{Ch \operatorname{arg} e} + \tau_{Disch \operatorname{arg} e} = \frac{12nL_{\min}^2 V_{DD}}{\mu_e \left[V_{DD} - V_{Tn}\right]^2}$$

Implies we should reduce L_{min} and increase V_{DD} .

Note: As we reduce L_{min} we must also reduce t_{ox} , but t_{ox} doesn't enter directly in f_{max} so it doesn't impact us here

Power density at maximum data rate

Assume that the area per inverter is proportional to W_{min}L_{min}

$$PD_{dyn @ f_{max}} \propto \frac{P_{dyn @ f_{max}}}{W_{\min}L_{\min}} = \frac{\mu_e \varepsilon_{ox} V_{DD} [V_{DD} - V_{Tn}]^2}{t_{ox} L_{\min}^2}$$

Shows us that PD increases very quickly as we reduce L_{min} unless we also reduce V_{DD} (which will also reduce f_{max}).

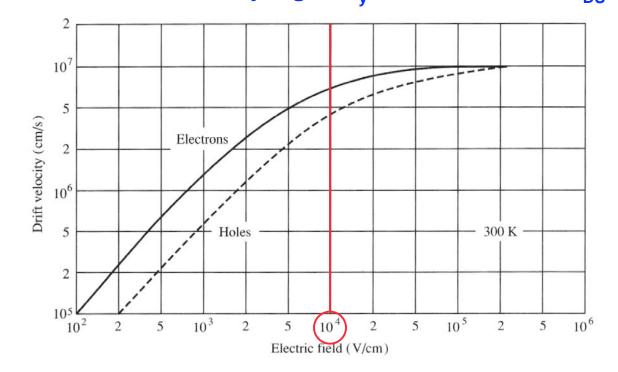
Note: Now t_{ox} does appear in the expression, so the rate of increase with decreasing L_{min} is even greater because t_{ox} must be reduced along with L.

How do we make f_{max} larger without melting the silicon? By following CMOS scaling rules - the topic of Lecture 16.

Clif Fonstad, 11/3/09

Sanity check

CMOS gate lengths are now under 0.1 µm (100 nm). The electric field in the channel can be very high: $E_v \ge 10^4$ V/cm when $v_{DS} \ge 0.1$ V.

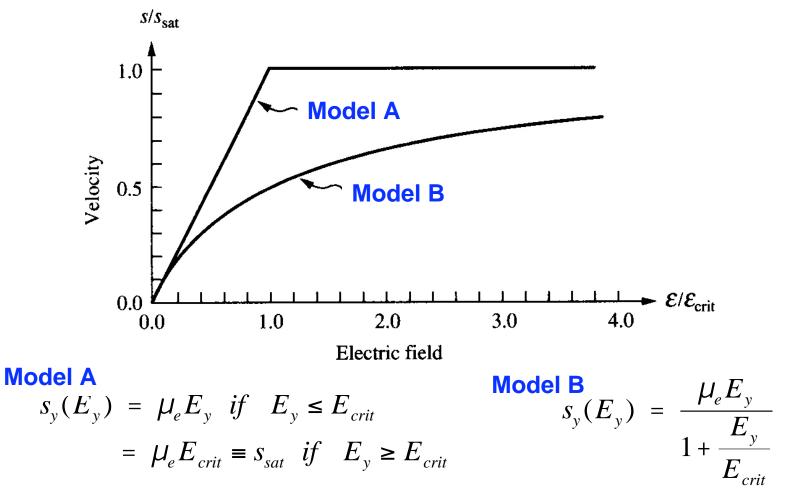


Clearly the velocity of the electrons and holes in the channel will be saturated at even low values of v_{DS}!
 What does this mean for the device and inverter characteristics?

Clif Fonstad, 11/3/09

Models for velocity saturation*

Two useful models are illustrated below. We'll use Model A today.

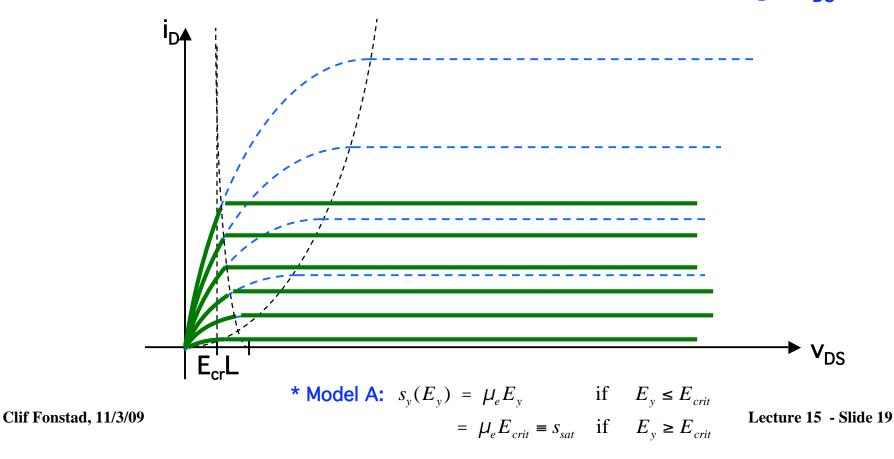


Clif Fonstad, 11/3/09

* See pp 281ff and 307ff in course text.

Drain current: i_D(v_{GS},v_{DS},v_{BS})

With Model A*, the low field i_D model, $s = \mu E$, holds for increasing v_{DS} until the velocity of the electrons at some point in the channel reaches s_{sat} (this will happen at the drain end). When this happens the current saturates, and does not increase further for larger v_{DS} .



If the channel length, L, is sufficiently small we can simplify the model even further because the carrier velocity will saturate at such a small v_{DS} that for $v_{DS} \ge E_{crit}L$ the inversion layer will be uniform and all the carriers will be drifting at their saturation velocity. In this situation (the saturation region) we will have:

$$i_D(v_{GS}, v_{DS}, v_{BS}) \approx -W q_N(v_{GS}, v_{BS}) s_{sat} = W s_{sat} C_{ox}^* [v_{GS} - V_T(v_{BS})]$$

For smaller v_{DS} , prior to the onset of velocity saturation, the linear region model we had earlier will hold. The entire characteristic, neglecting the $v_{DS}/2$ factor in the linear region expression, is

$$i_{D}(v_{GS}, v_{DS}, v_{BS}) \approx \begin{cases} 0 & \text{for} \quad (v_{GS} - V_{T}) < 0 < v_{DS} \\ W \ s_{sat} \ C_{ox}^{*} [v_{GS} - V_{T}(v_{BS})] & \text{for} \quad 0 < (v_{GS} - V_{T}), \ E_{crit} L < v_{DS} \\ \frac{W}{L} \ \mu_{e} \ C_{ox}^{*} [v_{GS} - V_{T}(v_{BS})] v_{DS} & \text{for} \quad 0 < (v_{GS} - V_{T}), \ v_{DS} < E_{crit} L \end{cases}$$

Note that the current in saturation increases linearly with ($v_{GS} - V_T$), rather than as its square like it did then the gate was longer.

Clif Fonstad, 11/3/09

This simple model for the <u>output characteristics</u> of a very short channel MOSFET (plotted below) provides us an easy way to understand the impact of velocity saturation on MOSFET and CMOS inverter performance.

Note first that in the forward active region where $v_{DS} \ge E_{crit}L$, the curves in the output family are evenly spaced, indicating a constant g_m : $g_m \equiv \partial i_D / \partial v_{GS} \Big|_O = W s_{sat} C_{ox}^*$

Clif Fonstad, 11/3/09

Charge/discharge cycle and gate delay: The charge and discharge currents, charges, and times are now:

$$i_{Disch \, \mathrm{arg} \, e} = i_{Ch \, \mathrm{arg} \, e} = W_{\min} \, s_{sat} \, C_{ox}^* \left(V_{DD} - V_{Tn} \right)$$

$$q_{Disch \, \mathrm{arg} \, e} = q_{Ch \, \mathrm{arg} \, e} = C_L V_{DD} = 3 W_{\min} L_{\min} C_{ox}^* V_{DD}$$

$$\tau_{Disch \, \mathrm{arg} \, e} = \tau_{Ch \, \mathrm{arg} \, e} = \frac{q_{Disch \, \mathrm{arg} \, e}}{i_{Disch \, \mathrm{arg} \, e}} = \frac{3 W_{\min} L_{\min} C_{ox}^* V_{DD}}{W_{\min} \, s_{sat} \, C_{ox}^* \left(V_{DD} - V_{Tn} \right)} = \frac{3 n L_{\min} V_{DD}}{s_{sat} \left(V_{DD} - V_{Tn} \right)}$$

CMOS minimum cycle time and power density at f_{max}:

$$\tau_{Min.Cycle} = \tau_{Ch \operatorname{arg} e} + \tau_{Disch \operatorname{arg} e} = \frac{6nL_{\min}V_{DD}}{s_{sat}\left[V_{DD} - V_{Tn}\right]} \quad \text{Note:} \quad \tau_{ChanTransit} = \frac{L}{s_{sat}}$$

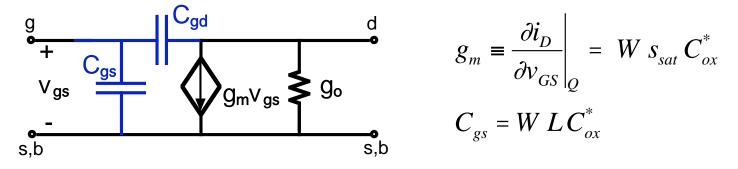
$$\tau_{Min.Cycle} \propto \frac{L_{\min}V_{DD}}{s_{sat}\left[V_{DD} - V_{Tn}\right]} = n'\tau_{ChanTransit} \quad PD_{dyn@f_{\max}} \propto \frac{s_{sat}\varepsilon_{ox}V_{DD}\left[V_{DD} - V_{Tn}\right]}{t_{ox}L_{\min}}$$

Lessons: Still gain by reducing L, but not as quickly. Scaling of both dimensions and voltage is still required. Channel transit time, L_{min}/s_{sat}, still rules!

Clif Fonstad, 11/3/09

MOSFETs: LEC w. velocity saturation

Small signal linear equivalent circuit: g_m and C_{gs} change



One final model observation: Insight on g_m

We in general want g_m as large as possible. To see another way to think about this is to note that g_m can be related to $\tau_{Ch-Transit}$:

No velocity
$$\rightarrow$$

saturation \rightarrow

$$g_{m} = \begin{cases} \frac{W}{L} \mu_{e} C_{ox}^{*} (v_{GS} - V_{T}) = \frac{W L C_{ox}^{*}}{L^{2} / \mu_{e} (v_{GS} - V_{T})} \\ W s_{sat} C_{ox}^{*} = \frac{W L C_{ox}^{*}}{L / s_{sat}} \end{cases} \propto \frac{C_{gs}}{\tau_{Ch Transit}}$$

 C_{gs} is a measure of how much channel charge we are controlling, and $1/\tau_{Ch-tr}$ is a measure of how fast it moves through the device. We'd like both to be large numbers.

Clif Fonstad, 11/3/09

6.012 - Microelectronic Devices and Circuits Lecture 15 - Digital Circuits: CMOS - Summary

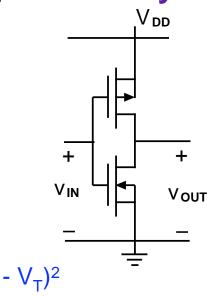
• CMOS

Transfer characteristic: symmetric

$$\begin{split} V_{LO} &= 0, \ V_{HI} = V_{DD}, \ I_{ON} = 0 \\ N_{ML} &= N_{MH} \ implies \ K_n = K_p, \ |V_{Tp}| = V_{Tn} \equiv V_T \\ L_n &= L_p = L_{min}, \ W_p = (\mu_e/\mu_h)W_n \end{split}$$

Gate delay expressions

$$\begin{split} \tau_{\text{LO-HI}} &= \tau_{\text{HI-LO}} = 2V_{\text{DD}}C_{\text{L}}/\text{K}_{n}(\text{V}_{\text{DD}} - \text{V}_{\text{T}})^{2} \\ \text{Gate delay (GD)} &= \tau_{\text{LO-HI}} + \tau_{\text{HI-LO}} = 4V_{\text{DD}}C_{\text{L}}/\text{K}_{n}(\text{V}_{\text{DD}} - \text{I}_{\text{DD}})^{2} \\ \text{If } C_{\text{L}} &= n(W_{n}L_{n} + W_{p}L_{p})C_{\text{ox}}^{*} = 3n \ W_{n}L_{\text{min}}C_{\text{ox}}^{*} \qquad \text{(As then GD = 12 n } L_{\text{min}}^{2}\text{V}_{\text{DD}}/\mu_{n}(\text{V}_{\text{DD}} - \text{V}_{\text{T}})^{2} \qquad \text{(Matrix} \end{split}$$



(Assumes $\mu_e = 2\mu_h$) (Motivation for reducing L_{min})

Power and speed-power product

$$\begin{split} P_{ave} &= f C_L V_{DD}^{2} \\ P_{dyn} @ f_{max} \propto C_L V_{DD}^{2} / GD = K_n V_{DD} (V_{DD} - V_T)^{2} / 4 \quad \text{(Motivation for reducing } V_{DD}\text{)} \end{split}$$

Velocity Saturation

Gate delay; Power and speed-power product:

```
Scales as 1/L_{min}, rather than (1/L_{min})^2
```

6.012 Microelectronic Devices and Circuits Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.