6.012 - Microelectronic Devices and Circuits Lecture 23 - Circuits at High Frequencies - Outline

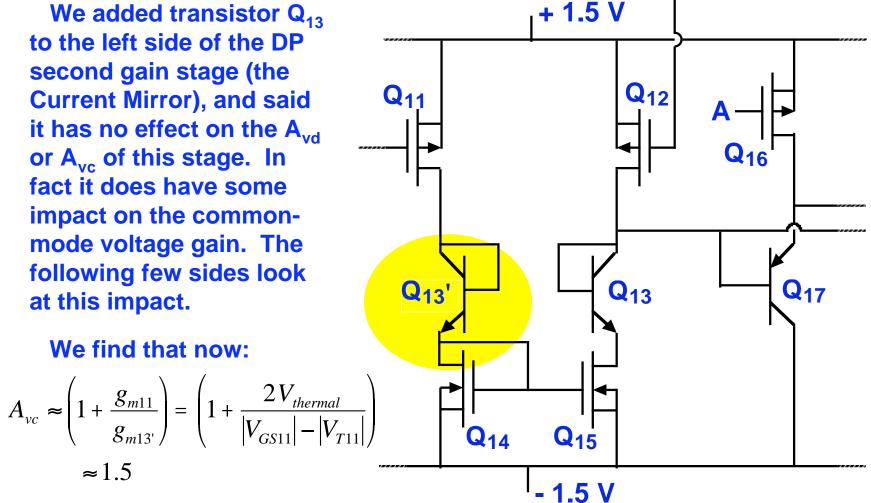
Announcements

Design Problem - Due tomorrow, Dec. 4, by 5 p.m. **Postings on Stellar -** Cascode; µA-741

• Bounding mid-band - finding ω_{HI} , ω_{LO}

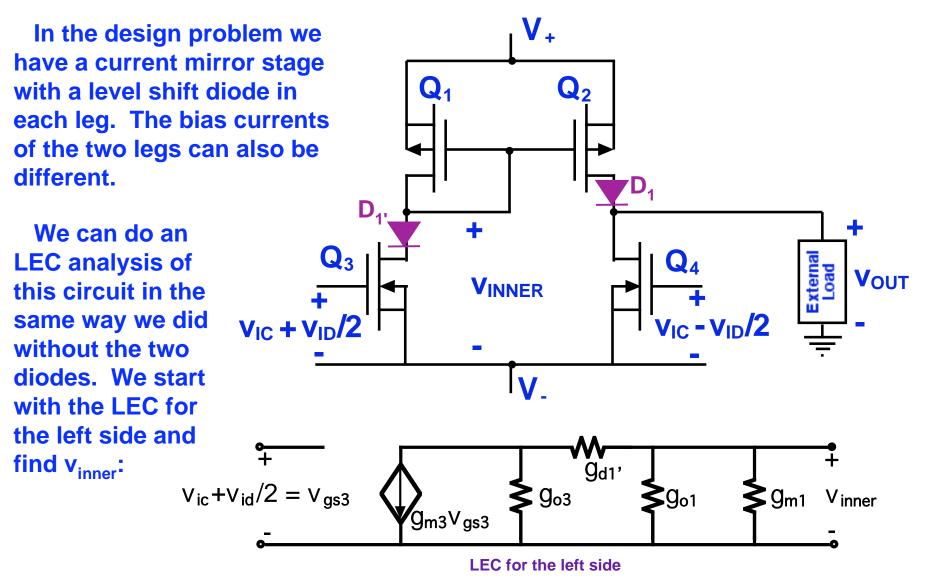
Method of open circuit time constants: finding ω_{HI} (How high can we fly?) Method of short circuit time constants: finding ω_{LO} (How low can we go?) The lesson of the OCTC and SCTC methods: which capacitors matter

• The Miller effect: why C_{μ} and C_{gd} are so important


The concept: the consequences of having a capacitor shunting a gain stage **Examples:** common-emitter/-source stages common-base/gate stages; emitter-/source-followers the μA 741 - stabilizing a high gain circuit

• The Marvelous cascode: impact on ω_{HI} Concept and ω_{HI} : getting larger bandwidth from CE + CB The costs

The impact of Q13' and Q13 on the voltage gains


We added transistor Q₁₃ to the left side of the DP second gain stage (the **Current Mirror), and said** it has no effect on the A_{vd} or A_{vc} of this stage. In fact it does have some impact on the commonmode voltage gain. The following few sides look at this impact.

We find that now:

Remember that it is possible to make the bias currents in the two legs of the mirror (Q_{11}/Q_{14}) and Q_{12}/Q_{15}) different by making the transistors widths different. Clif Fonstad, 12/3/09 Lecture 23 - Slide 2

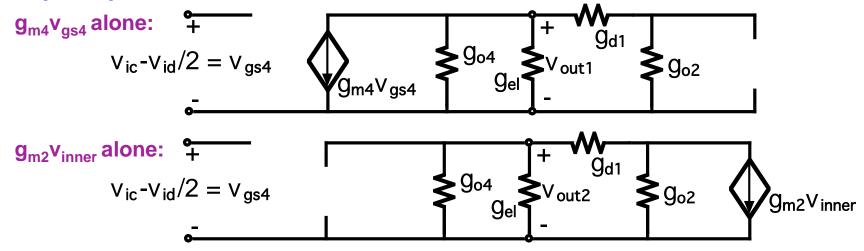
The impact of Q13' and Q13 on the voltage gains, cont.

The impact of Q13' and Q13 on the voltage gains, cont.

The left side LEC gives:

$$v_{inner} \approx -(1-\delta)\left(v_{ic} + \frac{v_{id}}{2}\right) \quad \text{with} \quad \delta = \frac{r_{d1'} + 2r_{m3}}{r_{o3}} = \frac{2g_{o3}}{g_{m3}}\left(1 + \frac{g_{m3}}{2g_{d1'}}\right)$$
Next we analyze the right side LEC:
$$v_{ic} - v_{id}/2 = v_{gs4}$$

$$\int_{g_{m4}} y_{gs4}$$


$$\int_{g_{el}} y_{out}$$

$$\int_{g_{el}} y_{out}$$

$$\int_{g_{el}} y_{out}$$

LEC for the right side

To see the impact of g_{d1} on this side, apply one source at a time and superimpose the results:

Clif Fonstad, 12/3/09

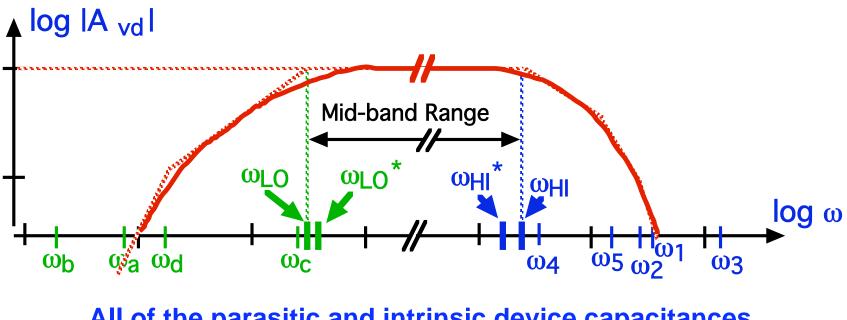
The impact of Q13' and Q13 on the voltage gains, cont.

Writing $r_{o4} || r_{el}$ as r_{o4}^{*} , and doing this we find:

$$v_{out} = v_{out1} + v_{out2} = \frac{(r_{o2} + r_d)r_{o4}^*}{(r_{o4}^* + r_{o2} + r_d)}g_{m4}v_{gs4} - \frac{r_{o2}r_{o4}^*}{(r_{o4}^* + r_{o2} + r_d)}(1 - \delta)g_{m2}v_{gs2}$$
$$= \frac{(r_{o2} + r_d)r_{o4}^*}{(r_{o4}^* + r_{o2} + r_d)}g_{m4}\left(v_{ic} - \frac{v_{id}}{2}\right) - \frac{r_{o2}r_{o4}^*}{(r_{o4}^* + r_{o2} + r_d)}(1 - \delta)g_{m2}\left(v_{ic} + \frac{v_{id}}{2}\right)$$

Next look at the terms involving v_{id} and v_{ic} terms separately:

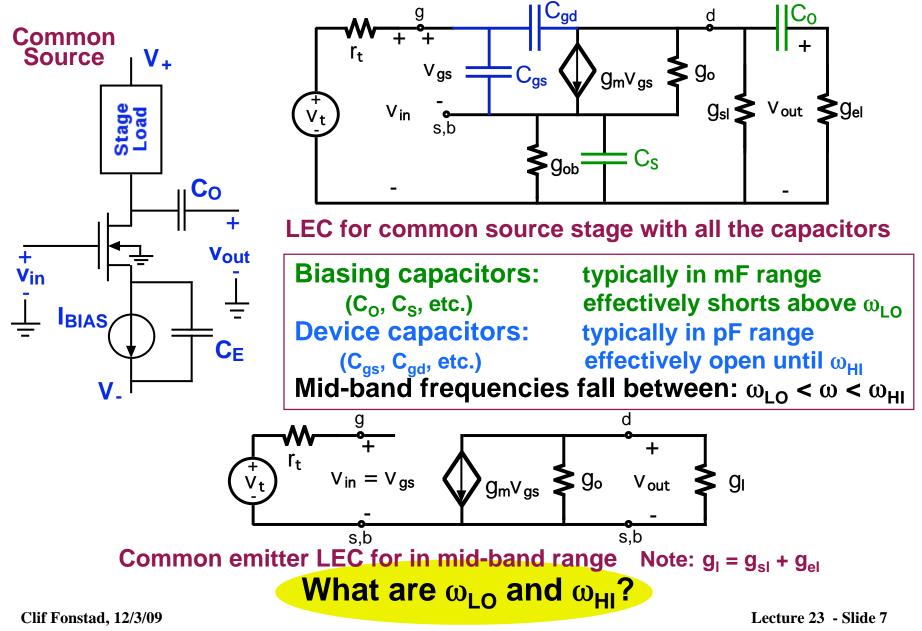
$$\begin{array}{l} \mathbf{V_{id}}:\\ -\left[\frac{\left(r_{o2}+r_{d}\right)r_{o4}^{*}}{\left(r_{o4}^{*}+r_{o2}+r_{d}\right)}g_{m4} + \frac{r_{o2}r_{o4}^{*}}{\left(r_{o4}^{*}+r_{o2}+r_{d}\right)}\left(1-\delta\right)g_{m2}\right]\frac{v_{id}}{2} \approx \frac{r_{o2}r_{o4}^{*}\left(2-\delta\right)}{\left(r_{o4}^{*}+r_{o2}+r_{d}\right)}g_{m4} \frac{v_{id}}{2} \\ \mathbf{V_{ic}}:\\ -\left[\frac{\left(r_{o2}+r_{d}\right)r_{o4}^{*}}{\left(r_{o4}^{*}+r_{o2}+r_{d}\right)}g_{m4} - \frac{r_{o2}r_{o4}^{*}}{\left(r_{o4}^{*}+r_{o2}+r_{d}\right)}\left(1-\delta\right)g_{m2}\right]v_{ic} = \frac{\left(r_{d}+\delta r_{o2}\right)r_{o4}^{*}}{\left(r_{o4}^{*}+r_{o2}+r_{d}\right)}g_{m4} v_{ic} \end{array}$$


Ultimately we find:

$$v_{out} \approx \frac{2g_{m4}}{(2g_{o4} + g_{el})} \frac{(v_{in1} - v_{in2})}{2} - \left(1 + \frac{g_{m1}}{g_{d1'}}\right) \frac{(v_{in1} + v_{in2})}{2}$$

≈ unchanged by adding diodes Clif Fonstad, 12/3/09 ≈ 1.5, increased from ≈1 by adding diodes Lecture 23 - Slide 5

<u>Note</u>: Analysis sets $g_{m1} = g_{m3}$, $g_{m2} = g_{m4}$, $g_{o1} = g_{o3}$, $g_{o2} = g_{o4}$. **Mid-band, cont:** The mid-band range of frequencies


In this range of frequencies the gain is a constant, and the phase shift between the input and output is also constant (either 0° or 180°).

All of the <u>parasitic and intrinsic device capacitances</u> are effectively open circuits

All of the <u>biasing and coupling capacitors</u> are effectively short circuits

Bounding mid-band: frequency range of constant gain and phase

Estimating ω_{HI} - Open Circuit Time Constants Method

Open circuit time constants (OCTC) recipe:

- 1. Pick one C_{gd} , C_{gs} , C_{μ} , C_{π} , etc. (call it C_1) and assume all others are open circuits.
- 2. Find the resistance in parallel with C_1 and call it R_1 .
- **3.** Calculate $1/R_1C_1$ and call it ω_1 .
- 4. Repeat this for each of the N different C_{gd} 's, C_{gs} 's, C_{μ} 's, C_{π} 's, etc., in the circuit finding $\omega_1, \omega_2, \omega_3, ..., \omega_N$.
- 5. Define ω_{HI}^* as the inverse of the sum of the inverses of the N ω_i 's:

 $ω_{HI}^{*} = [Σ(ω_i)^{-1}]^{-1} = [ΣR_iC_i]^{-1}$

6. The true ω_{HI} is similar to, but greater than, ω_{HI}^* .

Observations:

The OCTC method gives a conservative, low estimate for ω_{HI} . The sum of inverses favors the smallest ω_i , and thus the capacitor with the largest RC product dominates ω_{HI}^* .

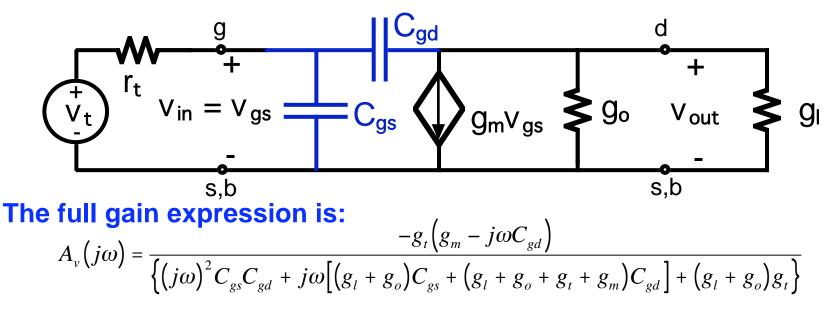
Estimating ω_{LO} - Short Circuit Time Constants Method

Short circuit time constants (SCTC) recipe:

- 1. Pick one C_0 , C_1 , C_E , etc. (call it C_1) and assume all others are short circuits.
- 2. Find the resistance in parallel with C_1 and call it R_1 .
- 3. Calculate $1/R_1C_1$ and call it ω_1 .
- 4. Repeat this for each of the M different C_I's, C_O's, C_E's, C_S's, etc., in the circuit finding $\omega_1, \omega_2, \omega_3, ..., \omega_M$.
- 5. Define ω_{LO}^* as the sum of the M ω_i 's:

 $\omega_{\text{LO}}^* = [\Sigma(\omega_j)] = [\Sigma(\mathsf{R}_j\mathsf{C}_j)^{-1}]$

6. The true ω_{LO} is similar to, but less than, ω_{LO}^* .


Observations:

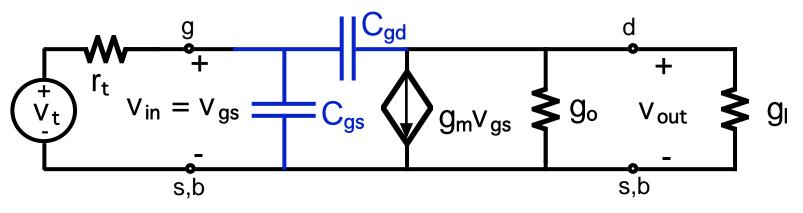
The SCTC method gives a conservative, high estimate for ω_{LO} . The sum of inverses favors the largest ω_j , and thus the capacitor with the smallest RC product dominates ω_{LO}^* .

Summary of OCTC and SCTC results $\log |A_{vd}|$ (Mid-band Range) (Wid-band Range)(Wid-band Range)

- **<u>OCTC</u>**: an estimate for ω_{HI}
 - ω_H* is a weighted sum of ω's associated with <u>device capacitances</u>: (add RC's and invert)
 - 2. Smallest ω (largest RC) dominates ω_{HI}^*
 - 3. Provides a lower bound on ω_{HI}
- **<u>SCTC</u>**: an estimate for ω_{LO}
 - 1. ω_{LO}^* is a weighted sum of w's associated with <u>bias capacitors</u>: (add ω 's directly)
 - 2. Largest ω (smallest RC) dominates ω_{LO}^*
 - 3. Provides a upper bound on ω_{LO}

ω_{HI} for the Common Source - the full treatment

There are two poles (call them ω_1 and ω_2), and one zero (call it ω_3):


$$\omega_{1} = g_{t} / [C_{gs} + (g_{l} + g_{o} + g_{t} + g_{m})r_{l}C_{gd}] \quad \text{with} \quad r_{l} = (g_{l} + g_{o})^{-}$$
$$\omega_{2} = (g_{l} + g_{o}) / C_{gd} + (g_{l} + g_{o} + g_{t} + g_{m}) / C_{gs}$$
$$\omega_{3} = g_{m} / C_{gd}$$

Upon examination of these three expressions we find that $\omega_1 \ll \omega_2$, ω_3 , so ω_1 is clearly the dominant pole, and ω_{HI} is effectively ω_1 .

Clif Fonstad, 12/3/09

Note: C_{db} has been neglected to keep things simpler; it is very small.

ω_{HI} for the Common Source - the OCTC method

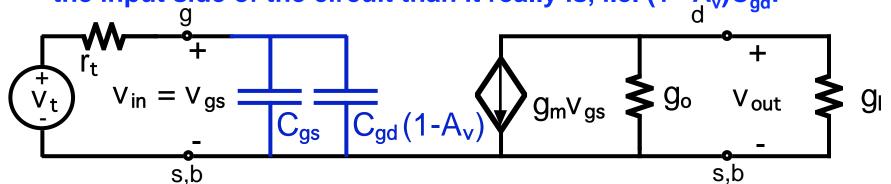
The resistance, R_{gs} , seen by C_{gs} with C_{gd} removed is $1/g_t$, so

 $\omega_{gs} = g_t / C_{gs}$

That seen by C_{gd} with C_{gs} removed, R_{gd} , is $(g_l'+g_t+g_m)/g_tg_l'$, so $\omega_{gd} = g_t / [g_l' + g_t + g_m] r_l C_{gd}$

Using the OCTC method we estimate ω_{HI} as

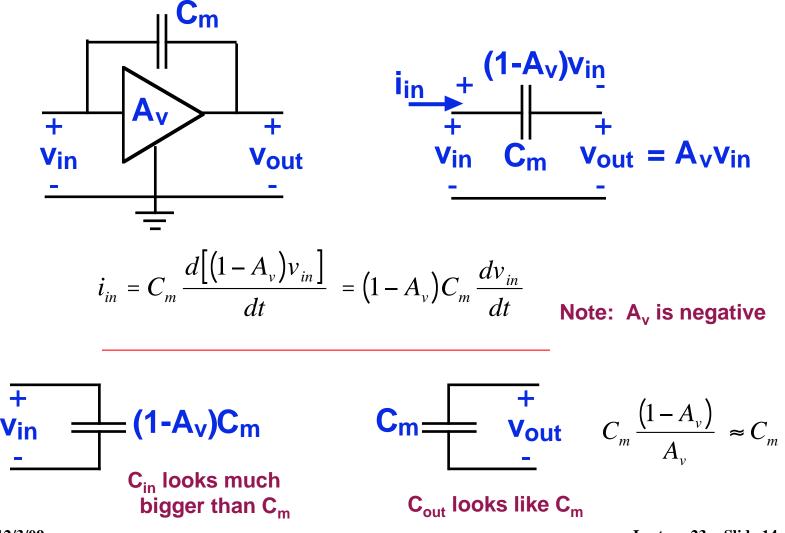
$$\omega_{HI}^{*} = \left(\omega_{gs}^{-1} + \omega_{gd}^{-1}\right)^{-1} = g_{t} / \left[C_{gs} + \left(g_{l} + g_{t} + g_{m}\right)r_{l} C_{gd}\right]$$


This is actually identical to the dominant pole, ω_1 , found using the full analysis.

ω_{HI} for the Common Source: the Miller effect

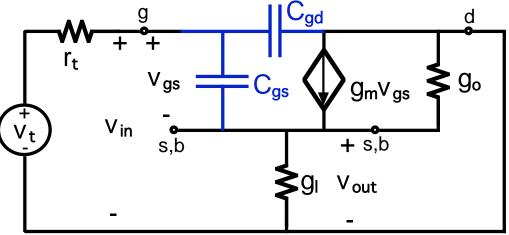
In both of our analyses we note that in the dominant term C_{gd} is multiplied by the factor $(g_l'+g_t+g_m)r_l'$. Noting (1) that typically it is true that $g_m >> g_t$, and (2) that $-g_m r_l'$ is the mid-band voltage gain, A_v , of the amplifier, we see that this factor can be approximated as one minus the voltage gain of the stage, i.e.:

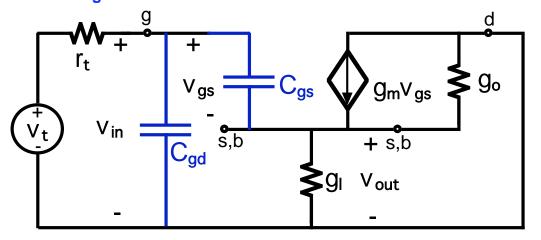
$$(g'_{l} + g_{t} + g_{m})r'_{l} = [1 + (g_{t} + g_{m})r'_{l}] \cong [1 + g_{m}r'_{l}] = (1 - A_{v})$$


If the voltage gain is large, then in effect C_{gd} looks bigger from the input side of the circuit than it really is, i.e. $(1 - A_v)C_{gd}$:

This "magnification" of a capacitor bridging the input and the output of a voltage amplifier, as C_{gd} does here, by $|A_v|$ is called the <u>Miller effect</u>.

The Miller effect (general)

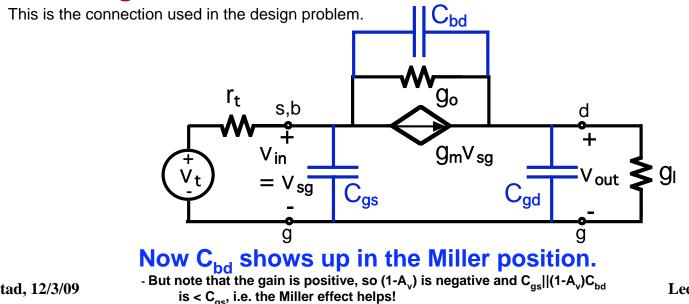

Consider an amplifier shunted by a capacitor, and consider how the capacitor looks at the input and output terminals:

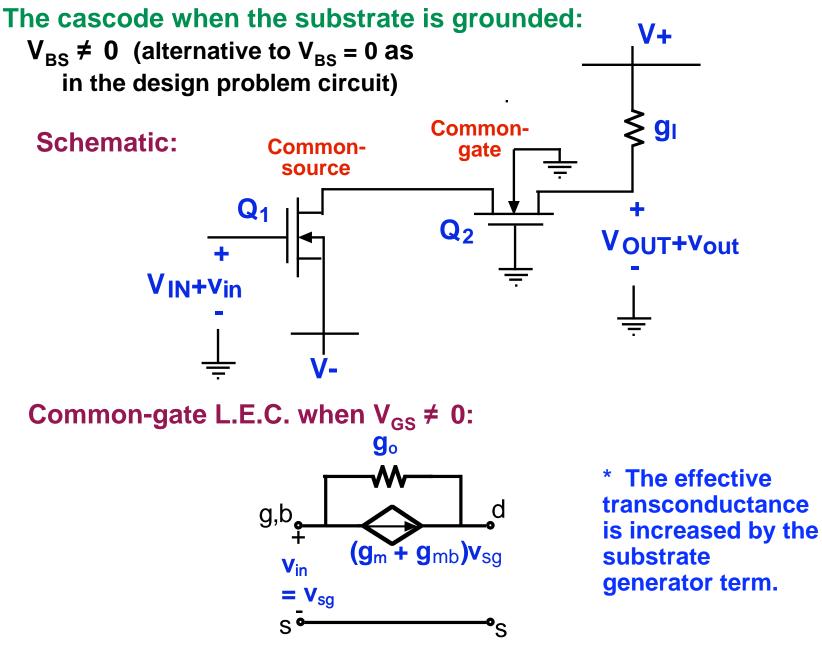

Clif Fonstad, 12/3/09

The Miller effect: Miller capacitors in other basic stages

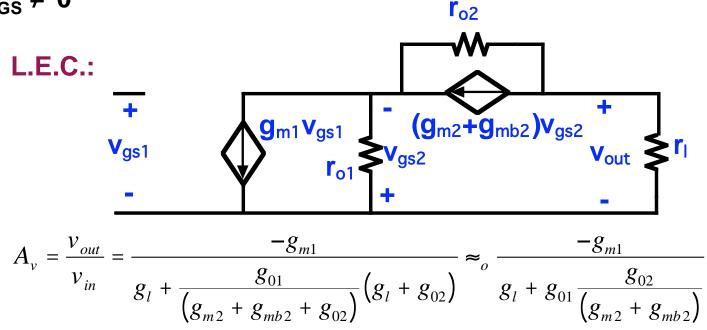
Common drain or source follower

Repositioning C_{qd} makes the situation clearer:


C_{gs} is in the Miller position, but the voltage gain is one so there is no Miller effect.


Clif Fonstad, 12/3/09

The Miller effect: Miller capacitors in other basic stages

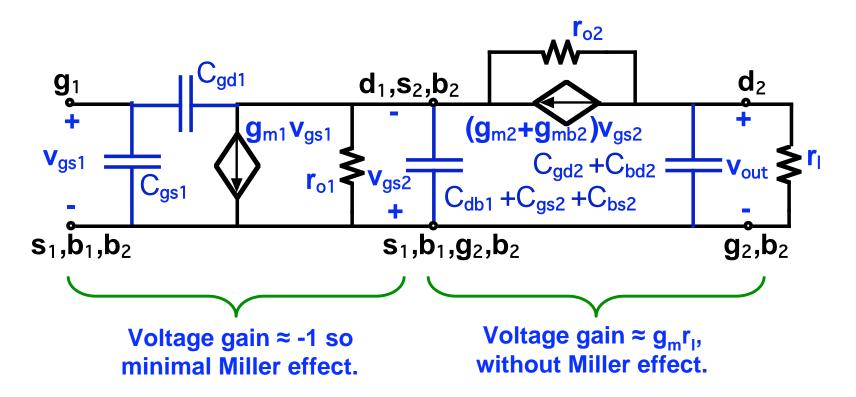

Common gate, substrate grounded The way one often sees common gate stages. g_o \mathcal{M} rt S d $(g_m + g_{mb}) v_{sg}$ Vin S gi Vt Vout $C_{gs} + C_{bs}$ $C_{gd} + C_{bd}$ $= V_{sg}$ g,b g,b No Miller effect, just as in common-base.

Common gate, substrate shorted to source



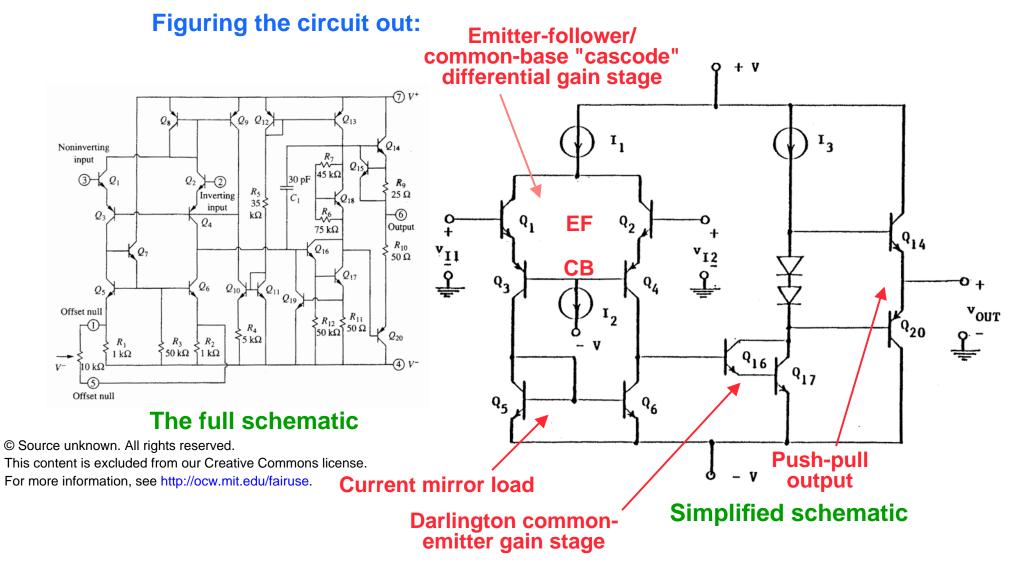
The cascode when the substrate is grounded, cont: $V_{GS} \neq 0$

The equivalent transistor, Q_{cc}:


The output resistance is even higher!

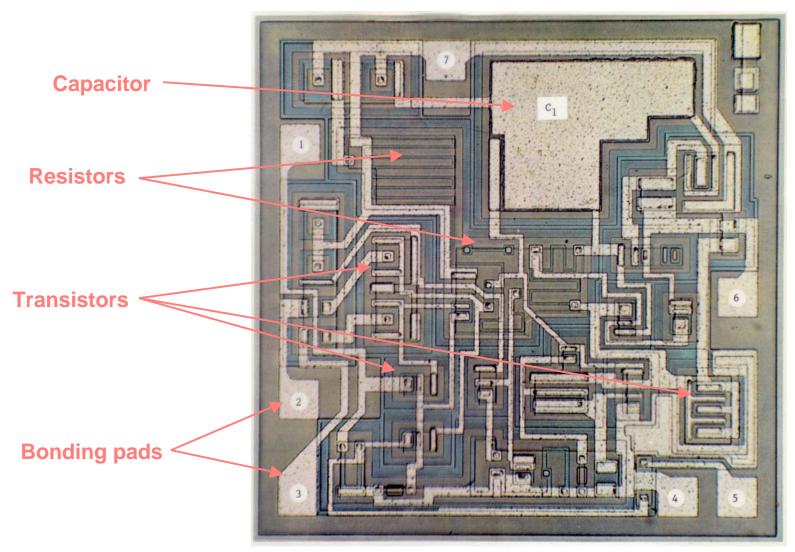
Lecture 23 - Slide 18

Clif Fonstad, 12/3/09

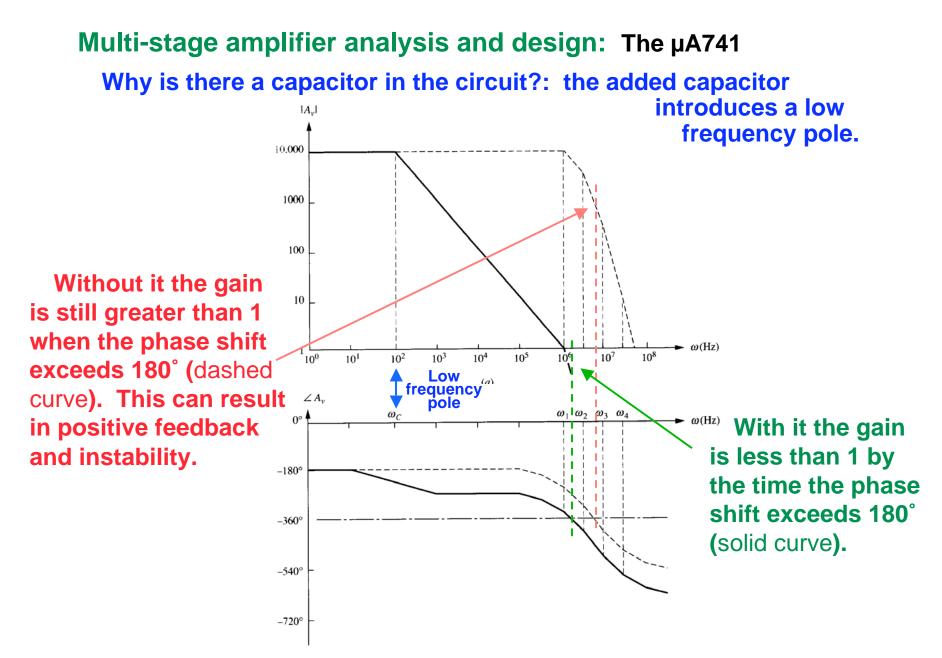

The cascode when the substrate is grounded, cont: High frequency issues:

> L.E.C. of cascode: <u>can't use</u> equivalent transistor idea here because it didn't address the issue of the C's!

Common-source gain without the Miller effect penalty!


© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Another interesting discussion of the µA741:


http://en.wikipedia.org/wiki/Operational_amplifier

Multi-stage amplifier analysis and design: The µA741

The chip: a bipolar IC

[©] Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

6.012 - Microelectronic Devices and Circuits

Lecture 23 - Circuits at High Frequencies - Summary

Bounding mid-band - finding ω_{HI} , ω_{LO}

 $ω_{HI}$: Find the resistance in parallel with each device capacitor assuming the such device capacitors are open circuits, calculate all the RC time constants, and add them. The inverse is a lower bound on $ω_{HI}$.

 ω_{LO} : Find the resistance in parallel with each bias capacitor assuming the other such capacitors are short circuits, calculate all the 1/RC frequencies, and add them. This sum is an upper bound on ω_{LO} .

The Miller effect: why C_{gd} is so important

The concept: a capacitor shunting a gain stage looks larger by $(1 - A_v)$

Examples: (1) The Miller effect magnifies C_{gd} in common-source stages;
 (2) There is no significant Miller effect impact on common-gate stages or on source-followers; (3) The Miller effect is used in the μA741 to get the relatively large capacitor needed to stabilize it.

The Marvelous cascode

Concept and ω_{HI} : Current gain from a CS stage and voltage gain from a CG to circumvent the Miller effect.

Output resistance: significantly larger than CS alone.

The costs: The added device increases the voltage distance away from the rails and limits voltage swings

6.012 Microelectronic Devices and Circuits Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.