
     
 

    

      
   

    

       

 

 

  

6.012 - Microelectronic Devices and Circuits 
Lecture 24 - Intrin. Freq. Limits - Outline
 

• Announcements 
Final Exam - Tuesday, Dec 15, 9:00 am - 12 noon 

• Review - Shunt feedback capacitances: Cµ and Cgd 
Miller effect: any C bridging a gain stage looks bigger at the input 
Marvelous cascode: CE/S-CB/G (E/SF-CB/G work, too - see µA741) 

large bandwidth, large output resistance 
used in gain stages and in current sources 

Using the Miller effect to advantage: Stabilizing OP Amps - the µA741 

• Intrinsic high frequency limitations of transistors 
General approach

MOSFETs: fT
 

biasing for speed 
impact of velocity saturation 
design lessons 

BJTs: fβ, fT, fα 
biasing for speed
 
design lessons
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Summary of OCTC and SCTC results 

• OCTC: an estimate for ωHI 

log !

log |A vd |

!b !c!d!a

!LO !LO*

!4 !5!2
!1 !3

!HI* !HI

Mid-band Range

1.	 ωHI* is a weighted sum of ω's associated with device capacitances: 
(add RC's and invert) 

2. Smallest ω (largest RC) dominates ωHI * 
3. Provides a lower bound on ωHI 

• SCTC: an estimate for ωLO 
1.	 ωLO * is a weighted sum of w's associated with bias capacitors: 

(add ω's directly) 
2. Largest ω (smallest RC) dominates ωLO * 
3. Provides a upper bound on ωLO 
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The Miller effect (general)
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Consider an amplifier shunted by a capacitor, and consider 
how the capacitor looks at the input and output terminals: 

Note: Av is negative 
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bigger than Cm Cout looks like Cm 
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The cascode when the substrate is grounded: 
High frequency issues: 

L.E.C. of cascode: can't use equivalent transistor idea here 
because it didn't address the issue of the C's! 

ro2

vgs1

gm1vgs1

ro1

+

-

(gm2+gmb2)vgs2

+

-

vgs2

+

-

vout
rl

Cdb1 +Cgs2 +Cbs2

Cgd2 +Cbd2

Cgd1

Cgs1

g1 d1,s2,b2 d2

s1,b1,b2 s1,b1,g2,b2 g2,b2

Voltage gain ≈ -1 so Voltage gain ≈ g rl,m
minimal Miller effect. without Miller effect. 

Common-source gain without the Miller effect penalty!
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Multi-stage amplifier analysis and design: The µA741
 

Figuring the circuit out: Emitter-follower/

Current mirror load 
Simplified schematic 

Push-pull
output 

common-base "cascode" 
differential gain stage 

EF 

CB 

The full schematic 
© Source unknown. All rights reserved.
 
This content is excluded from our Creative Commons license.
 
For more information, see http://ocw.mit.edu/fairuse.
 

Darlington common-
emitter gain stage 

© Source unknown. All rights reserved. 
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Multi-stage amplifier analysis and design: Understanding the µA741 
input "cascode" 

Begin with the BJT building-block stages: 
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Relative sizes: 
gm: large 
gπ: medium 
go: small 

gt, gl: cannot 
generalize 
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Multi-stage amplifier analysis and design: Two-port models 
Two different "cascode" configurations, this time bipolar: 
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In a bipolar cascode, starting with an emitter follower still reduces the 
gain, but it also gives twice the input resistance, which is helpful. 
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Multi-stage amplifier analysis and design: MOSFET 2-port models 
Reviewing our building-block stages: 
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Relative sizes: 
large gm, gmb: 

go: small 
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generalize 
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Multi-stage amplifier analysis and design: Two-port models
 

Two different "cascode" configurations: 
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With MOSFETs, starting a cascode with a source follower costs a factor of two in gain
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Multi-stage amplifier analysis and design: The µA741
 

The circuit:  a full schematic 

The monolithic capacitor made the µA741

"complete" and a big success. Why is it

needed? What does it do? 

C
1 

is in 

a Miller 

position 

across 

Q
16 
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This content is excluded from our Creative Commons license.
 
For more information, see http://ocw.mit.edu/fairuse.
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Multi-stage amplifier analysis and design: The µA741
 

Why is there a capacitor in the circuit?:  the added capacitor
introduces a low 

frequency pole
that stabilizes 

the circuit. 

Without it the gain 
is still greater than 1 
when the phase shift 
exceeds 180˚ (dashed 
curve).  This can result 
in positive feedback 
and instability. 

With it the gain 
is less than 1 by 
the time the phase 
shift exceeds 180˚ 

(solid curve). 

Low
frequency

pole 
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Intrinsic performance - the best we can do 
We've focused on ωHI, the upper limit of mid-band, but even when ω > ωHI 

the |Av| > 1, and the circuit is useful.  For example, for the common 
source stage we had 
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log !
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!1gm /(gl+go)

A Bode plot of 
Av is shown 
to the right: 

this and ask how high can a device in isolation have 
provide voltage or current gain? 

When we look for a metric to compare the ultimate 
performance limits of transistors, we make note of 
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Intrinsic performance - the best we can do, cont. 
Consider the two possibilities shown below, one for a voltage input and 

output where the metric would be the open circuit voltage gain, Av,oc, 
and the other for a current input and output with the metric being the 
short circuit current gain, Ai,sc (commonly written βsc): 
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Of these two alternatives, β is the more useful. A is derived with a sc v,oc 
voltage source driving a capacitor, something that doesn't give a mean-
ingful result and leads to ever increasing input power.  It also does not 
involve gm and Cgs.  Consequently, short circuit current gain is used as 
the intrinsic high frequency performance metric for transistors. 
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       Intrinsic ωHI's for MOSFETs - short-circuit current gain
 

+
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vgs gmvgs
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Cgd idd

ss

g

The common-source short-circuit current gain is:
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j# C
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there is one pole at ω = 0, and one zero, ωz: 

! 

"
z

=
g

m

C
gd

The short circuit current gain, βsc, is infinite at DC (ω = 0) , and 
its magnitude decreases linearly with increasing frequency. 
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        Intrinsic ωHI's for MOSFETs - short-circuit current gain, cont.
 

+
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ss

g

The magnitude of βsc decreases with ω, but it is still greater 
than one for a wide range of frequencies. 
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The transistor is useful until |βsc| is less than one. The 
frequency at which this occurs is called ωt. Setting = 1 and 
solving for ωt yields: 
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MOSFET short-circuit current gain, βsc(jω), cont. 

log !

log |"sc |

!t

!z

No 3dB point, ωb. 

Low frequency value: 
infinity 

Zero, ωz : ωz = gm/Cgd 

Note: ωz > ωt 

Unity gain point, ωt : ωt @ gm/(Cgs+Cgd) 
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MOSFET short-circuit current gain, βsc(jω), cont. 
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Can we bias to maximize ωt? 

What is the ultimate limit? 
Channel 
transit 
time! 

Maximize VGS. 
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Lessons: Bias at well above VT; make L small, use n-channel.
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        An aside: looking back at CMOS gate delays
 

CMOS: switching speed; minimum cycle time (from Lec. 15) 

Gate delay/minimum cycle time: 
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µ
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For MOSFETs operating in strong inversion, no velocity saturation: 

Comparing this to the channel transit time:
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We see that the cycle time is a multiple of the transit time:
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When velocity saturation dominated, we found the same thing:
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Intrinsic ωHI's for MOSFETs - βsc(jω) and ωt w. velocity saturation 

What about the intrinsic ωHI of a MOSFET operating with full 
velocity saturation? 

The basic result is unchanged; we still have: 
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However, now gm is different: 
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In the case where velocity saturation dominates, we once again find 
that it is the channel transit time that is the ultimate limit. 

Do you care to speculate on the intrinsic ωHI of a BJT? 
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Intrinsic ωHI's for BJTs - short-circuit current gain
 

The common-emitter short-circuit current gain is: 
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there is one pole, call it ωp, and one zero, ωz: 
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Of these two, ωp is much smaller and this is the 3dB point of 
the common-emitter short-circuit current gain. 

! 

"# =
g$

C$ + Cµ( )

We give it the 
name ωβ: 
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        Intrinsic ωHI's for BJTs - short-circuit current gain, cont.
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The magnitude of βsc decreases above ωb, but it is still 
greater than one initially: 
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The transistor is useful until |βsc| is less than one. The 
frequency at which this occurs is called ωt. Setting = 1 and 
solving for ωt yields: 

! 

"
t
=

g#
2 + g

m

2( )
C# + Cµ( )

2

$Cµ

2[ ]
%

g
m

C# + Cµ( )

Clif Fonstad, 12/8/09 Lecture 24 - Slide 21 



        

      

    

      

          

     BJT short-circuit current gain, βsc(jω), cont. 

log !

log |"sc |

"F

!" !t

!z

Note: ωz > ωt >> ωβ 

/Cµ 

3dB point, ωb: ωb = gπ/(Cπ+Cµ) 

Unity gain point, ωt : ωt @ gm/(Cπ+Cµ) 

Low frequency value: βF 

Zero, ωz : ωz = gm

(= ωt /βF) 
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BJT short-circuit current gain, βsc(jω), cont. 
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In the limit of large IC: 
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Can we bias to maximize ωt? 

Maximize IC. 
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Lessons: Bias at large IC; make wB small, use npn.
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6.012 - Microelectronic Devices and Circuits
 

Lecture 24 - Intrinsic Limits of Transistor Speed - Summary
 

• Intrinsic high frequency limits for transistors
General approach: short-circuit current gains 

• Limits for MOSFETs: 
Metric - CS short-circuit current unity gain pt: ωT = gm/[(Cgs+Cgd)2 -Cgd 

2]1/2 

ωT is approximately g /C =  3µ (VGS-VT)/2L2 
m gs  e

g = (W/L)µ C *(VGS-VT) and C = (2/3)WLC * 
m e ox gs  ox
 

so ωT ≈ 3µe(VGS-VT)/2L2 = 1/τch
 

Design lessons: bias at large ID
 
minimize L (win as L2; as L in velocity saturation)
 
use n-channel rather than p-channel (µ >> µh)
 

• Limits for BJTs: 
e 

Metrics - CE short-circuit current gain 3B pt: ωb = gp/(Cπ + Cµ)
 
CE short-circuit current gain unit gain pt: ωT = gm/(Cπ + Cµ)
 

ωT approaches 1/τb as Ic increases and τb = wB
2/2Dmin,B
 

so ωT ≈ 2Dmin,B/wB
2  = 2µeVt/wB

2 = 1/τb
 

CB short-circuit current gain unit gain pt: ωα = gm/Cπ
 

Design lessons: bias at high collector current
 
minimize wB (win as wB

2)
 
use npn rather than pnp (µ >> µh)
e 
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