6.012 - Microelectronic Devices and Circuits
 Lecture 25 - Beyond Si; Beyond 6.012 - Outline

- Announcements

HKN Evaluation - Do before final so you're still in a good mood.
Final - Tuesday, Dec 15, 9:00 am to Noon
Covering all the course; closed book; 4 problems

- Sub-threshold Circuit - What, Why, How

Applications: medical implants, remote sensors, portable devices
Digital design: choosing V_{DD} for minimum energy per operation

- Devices we have known - Where are they now:

MOSFETs: 5 nm Si, III-V high electron mobility transistors
BJTs: InP based double heterojunction bipolar transistors
LEDs: white lighting; laser diodes
Solar cells: multi-junction, multi-material concentrator cells

- Life after 6.012

Is it possible? ("Where does one head after taking the header?")

Sub-threshold Circuit Design: The need for low energy

Emerging applications require ultra-low energy:
μ-sensors, medical devices
Images removed due to copyright restrictions:
cartoons and figures illustrating microsensors, medical devices, ambient intelligence, and portable devices.

Ambient intelligence, portable devices

Sub-threshold operation:
Slow, lower power, minimum energy operation becomes possible
Sub- V_{T} benefits:
Power
Energy
Concerns:
Increased sensitivity to noise and to variations in V_{T} and T .

Sub-threshold Circuit Design: Digital Inverters, cont.

$$
I_{D}=I_{S, s-t} e^{\frac{v_{G S}-V_{T}}{n V_{t}}}\left(1-e^{-\frac{v_{D S}}{V_{t}}}\right)
$$

$$
\text { with } \quad I_{S, s-t}=K V_{t}^{2}(n-1)
$$

Sub-threshold Circuit Design: Digital Inverters

Operation of standard CMOS gate with $\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{T}}$

CMOS Inverter Voltage Transfer Curves $\left|\mathrm{V}_{\mathrm{T}}\right|=0.5 \mathrm{~V}$

 Prof. Anantha Chandrakasan's supervision.

Sub-threshold Circuit Design: CMOS Inverters, cont.

In low-power applications an important metric the energy per operation, $\mathrm{E}_{\text {pop }}$. There is an optimum supply voltage that minimizes $\mathrm{E}_{\text {pop }}$.

Operating in strong inversion, $\mathrm{E}_{\mathrm{pop}}=\mathrm{C}_{\mathrm{L}} \mathrm{V}_{\mathrm{DD}}{ }^{2}$, and reducing V_{DD} clearly reduces $\mathrm{E}_{\text {pop }}$. As V_{DD} approaches V_{T}, however, the contribution of subthreshold leakage becomes important, especially because the gate delay, $\tau_{G D}$ (time per operation) increases as charging current decreases.

In general:

$$
\boldsymbol{\tau}_{G D}=2 C_{L} V_{D D} / I_{D, s a t}
$$

Only $\mathrm{I}_{\mathrm{D}, \text { sat }}$ is different depending on the region of operation.
In strong inversion:

$$
I_{D, s a t}=K\left(V_{D D}-V_{T}\right)^{2} / 2
$$

Sub-threshold:

$$
I_{D, s a t}=K V_{t}^{2}(n-1) e^{\left(V_{D D}-V_{T}\right) / n V_{t}}
$$

Just above threshold:

$$
I_{D, s a t}=K\left[V_{t}^{2}(n-1)+\left(V_{D D}-V_{T}\right)^{2} / 2\right]
$$

Thanks to Naveen Verma for discussions on sub-threshold circuits.

Sub-threshold Circuit Design: CMOS Inverters, cont.

The energy per operation, $\mathrm{E}_{\text {pop }}$, including energy dissipated by the subthreshold leakage current, $\mathrm{I}_{\text {leakage }} \mathbf{X} \boldsymbol{\tau}_{\mathrm{GD}} \mathbf{X} \#$ of idle gates is:

$$
E_{p o p}=C_{L} V_{D D}^{2}+A I_{\text {leakage }} V_{D D} \tau_{G D}=C_{L} V_{D D}^{2}\left[1+2 A I_{\text {leakage }} / I_{D, \text { sat }}\right]
$$

\mathbf{A} is the average number of idle gates per active gate, and the leakage current is:

$$
I_{\text {leakage }}=K V_{t}^{2}(n-1) e^{-V_{T} / n V_{t}}
$$

Evaluating $E_{\text {pop }}$ in each region of operation we find:

$$
E_{p o p}= \begin{cases}C_{L} V_{D D}^{2}\left[1+2 A e^{-V_{D D} / n V_{t}}\right] & \text { Sub-threshold } \\ C_{L} V_{D D}^{2}\left[1+\frac{2 A e^{-V_{D D} / n V_{t}}}{1+\left(V_{D D}-V_{T}\right)^{2} / 2 V_{t}^{2}(n-1)}\right] & \text { Just above threshold } \\ C_{L} V_{D D}^{2} & \text { In strong inversion }\end{cases}
$$

These expressions are plotted on the next slide.
Thanks to Naveen Verma for discussions on sub-threshold circuits.

Sub-threshold Circuit Design: Minimizing Energy per Operation in CMOS Logic

The energy per operation, $\mathrm{E}_{\mathrm{pop}}$, assuming $\left|\mathrm{V}_{\mathrm{T}}\right|=0.4 \mathrm{~V}, \mathrm{n}=2$, and $\mathrm{A}=50$ and 100 is plotted below. Note the minimum for V_{DD} a bit below $\mathrm{V}_{\mathrm{T}}{ }^{* *}$:

** The results are quite sensitive in detail to the values of n, A, and V_{T}. Thanks to Naveen Verma for sub-threshold circuit discussions.

Sub-threshold Circuit Design: Minimizing Energy per Operation, cont.

Reducing V_{DD} reduces the charging/discharging currents rapidly and increases the cycle time significantly, so $\mathrm{E}_{\text {min }}$ operation is low speed.

Supply Voltage, $\mathbf{V}_{\text {DD }}$ [V]
For many remote and monitoring sensor application this is just fine.

Sub-threshold Circuit Design: CMOS Inverters, cont.

11 stages

Work of Benton H. Calhoun at M.I.T. under Prof. Anantha Chandrakasan's supervision.

Sub-threshold Circuit Design: Linear circuits

Conventional stages and designs can be operated in subthreshold, just as was done with CMOS gates. They are slow, but if power is a concern and high speed isn't (i.e, under 10 MHz is OK), they are worth considering.

New types of MOS circuits are also possible: Translinear circuits.* Consider first, for example, the sub-threshold current mirror on the right:

$$
\begin{gathered}
V_{R E F}-V_{T}=-n V_{t} \ln \frac{I_{1}}{W_{1} I_{S, s-t}} \\
I_{2}=W_{2} I_{S, s-t} e^{-\left(V_{R E F}-V_{T}\right) / n V_{t}}=\frac{W_{2}}{W_{1}} I_{1}
\end{gathered}
$$

Note the exp to ℓn and ℓ n to \exp conversions.

* Translinear circuits were invented by Barrie Gilbert of Analog Devcies working with BJTs (IEEE JSSC, Vol SC-3, No. 4, Dec. 1968, pp. 353-373).

Sub-threshold Circuit Design: Translinear circuits, cont.

Now consider using this log function and its inversion to do multiplication. Consider the following circuit:

To begin note that:

$$
v_{G S 1}+v_{G S 2}=v_{G S 3}+v_{G S 4}
$$

$$
\begin{aligned}
& \text { and: } \\
& v_{G S i}-V_{T}=-n V_{t} \ln \frac{I_{i}}{W_{i} I_{S, s-t}}
\end{aligned}
$$

Isolating \mathbf{v}_{GS} :

$$
v_{G S 4}=v_{G S 1}+v_{G S 2}-v_{G S 3}
$$

and substituting, we find:

$$
I_{4}=\frac{I_{1} \cdot I_{2}}{I_{3}} \cdot \frac{W_{3} \cdot W_{4}}{W_{1} \cdot W_{2}}
$$

Circuits like this can be used to do analog multiplication.

* After 6.376 notes via Naveen Verma.

High frequency metric, f_{T} : unity gain point of the shortcircuit current gain, $\boldsymbol{\beta}_{\mathrm{sc}}(\mathrm{j} \omega)$

Bipolar Junction Transistors: basic operation and modeling...
... how the base-emitter voltage, v_{BE}, controls the collector current, i_{C}

Why HBTs?: high speed, current, and efficiency.

Heterojunction BipolarTransistors: higher mobility materials, graded base to create drift field, different E_{g} to tailor injection

Figure by MIT OpenCourseWare.

Work of Prof. Milton Feng and students at University of Illinois
Source: Compound Semiconductor, March 2008

Heterojunction BipolarTransistors, cont: $\mathrm{f}_{\mathrm{T}}=\mathbf{6 8 5} \mathbf{G H z}$ @ R.T.

Notice that performance above $50-100 \mathrm{GHz}$ is extrapolated using the theoretical frequency dependence to get f_{T} and $f_{\text {max }}$ values. This is accepted practice because the instrumentation needed does not exist.

Source: Compound Semiconductor, March 2008

Mixing technologies and materials on a Si platform: other routes

 to keeping performance on the Si roadmap; optoelectronic integration
Coaxial coupling:

research at MIT

Evanescent vertical coupling:

work at UCSB and Intel

Figure by MIT OpenCourseWare.

Grating coupling:

 specific to VCSELsSource: Dirk Taillaert, INTEC, University of Gent

Lecture 25 - Slide 28
Courtesy of Dirk Taillaert. Used with permission.

Solar Cells: Illumination shifts diode curve downward Electrical power is produced in 4th quadrant
The total current: $i_{D}\left(v_{A B}, M\right)=i_{D}\left(v_{A B}, 0\right)+i_{D}(0, M)$

$$
=I_{s}\left(e^{q q_{A B} / k T}-1\right)-A q M(1-a)
$$

Illumination shifts the ideal diode curve down vertically:

Solar Cells: A single band-gap diode misses much of the solar energy spectrum

Photons with energy, h ν, less than E_{g} are not absorbed, and that part of the spectrum is lost.

Photons with energy, $\mathrm{h} v$, more than E_{g} are absorbed but all their energy above E_{q} is lost to the crystal lattice as the electrons and holes "relax" to the bottom of their the lowest energy states. This limits Si solar cell efficiency to ~ $\mathbf{2 0 \%}$.

The solution: Stack (layer) several solar cells with differing band-gaps so each optimally absorbs the optimum range of photons.

Solar Cells: Multi-junction solar cells InGaP/GaAs/Ge

Solar Cells: Multi-junction solar cells InGaP/GaAs/Ge, cont.

Figure by MIT OpenCourseWare.

Life after 6.012 - "I've taken the header, so...where can I head?"

- Physics
6.719: Nano electronics (see also 6.701; similar but "U") H G(S)
6.728: Applied quantum and statistical physics $H \quad G(F)$
6.729: Molecular electronics H G(S)
6.730: Physics for solid-state applications H G(S)
6.732: Physics of solids H G(F)
6.763: Applied superconductivity

G(F*)

- Devices
6.720J: Integrated microelectronic devices H G(F)
6.731: Semiconductor optoelectronics

H G(F*)
6.772: Compound semiconductor devices

G(S*)
6.777J: Design and fabrication of MEMS
6.789: Organic optoelectronics

G(S*)

Life after 6.012 - cont.

- Processing 6.152J: Microelectronics processing technology U(F,S)
6.774: Physics of fabrication: front-end proc. H G(F^{\star})
6.778J: Materials and processes for MEMS H G(S)
6.780J: Control of manufacturing processes H G(S*)
6.781J: Sub-micron and nanometer technology H G(S)
- Analog circuits
6.301: Solid-state circuits

G(F)
6.302: Feedback systems
6.331: Advanced circuit techniques
6.334: Power electronics
6.376: Low power analog VLSI
6.775: Design of analog MOS LSI
6.776: High speed communications circuits

G(S)
H
G(S)
G(F)
G(S)

- Digital circuits

6.374:	Analysis and design of digital ICs	H
6.375: Complex Digital Systems Design	H	G(S)

6.012 - Microelectronic Devices and Circuits

Lecture 25 - Beyond Si; Beyond 6.012 - Summary

- The current state-of-the-art

Very small and blazingly fast (and getting smaller and going faster every day)

$$
L_{\min }=\underset{\rightarrow 0.75 \mu \mathrm{~m}}{1.0 \mu \mathrm{~m}}
$$

$\rightarrow 0.5 \mu \mathrm{~m}$
$\rightarrow 0.35 \mu \mathrm{~m}$
$\rightarrow 0.25 \mu \mathrm{~m}$
$\rightarrow 0.18 \mu \mathrm{~m}$
The world of semiconductor electronics encompasses far more than Si μ P's and RAM, but it all benefits from the technology advances these major Si applications fund.
$\rightarrow 0.13 \mu \mathrm{~m}$
$\rightarrow 90 \mathrm{~nm}$
We'reinthisoginow.
$\rightarrow 45 \mathrm{~nm}$ We'reinthis eginnow.
$\rightarrow 32 \mathrm{~nm}$ We're in this region now. $\rightarrow{ }_{22 \mathrm{~nm}}$

- Life after 6.012

Yes, there is life after 6.012.
\rightarrow Physics
\rightarrow Devices
\rightarrow Processing
\rightarrow Analog circuits
\rightarrow Digital circuits

MIT OpenCourseWare
|http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits

Fall 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

