Problem 1

Consider the CMOS inverter pictured below. Take channel length modulation into account.

Parameter	NMOS	PMOS
$\mathbf{V}_{\text {TO }}$	$\mathbf{0 . 5 ~ V}$	$-\mathbf{0 . 5} \mathbf{V}$
$\boldsymbol{\mu}$	$\mathbf{2 2 0} \mathrm{cm}^{2} / \mathbf{V s}$	$\mathbf{1 1 0 \mathbf { c m } ^ { 2 } / \mathbf { V s }}$
λ	$\mathbf{0 . 1 ~} \mathbf{V}^{-1}$	$\mathbf{0 . 1 \mathbf { V } ^ { - 1 }}$
$\mathbf{T}_{\mathbf{o x}}$	$\mathbf{1 5 ~ n m}$	$\mathbf{1 5 ~ n m}$

- Dimensions of W and L are in μm

a) Calculate V_{M}, the voltage midpoint.
b) Calculate A_{V}, the voltage gain at $V_{I N}=V_{M}$.
c) Calculate N_{ML} and N_{MH}, the noise margin low and noise margin high.
d) Calculate $t_{\text {PHL }}$ and $t_{\text {PLH }}$, the propagation delay from high-to-low and propagation delay from low-to-high.

Problem 2

We will now use the following SPICE model and compare our hand calculations from Problem 1 with simulated results.

```
.MODEL N15 NMOS LEVEL=1 VT0=0.5 TOX=1.5e-8 U0=220 LAMBDA=1.0e-1
+GAMMA=0.6 CJ=1e-4 CJSW=5e-10 PB=0.95
.MODEL P15 PMOS LEVEL=1 VT0=-0.5 TOX=1.5e-8 U0=110 LAMBDA=1.0e-1
+GAMMA=0.6 CJ=3e-4 CJSW=3.5e-10 PB=0.9
```

a) Use the DC sweep on the input voltage to simulate transfer characteristics using SPICE. Compare $\mathrm{V}_{\mathrm{M}}, \mathrm{A}_{\mathrm{V}}, \mathrm{N}_{\mathrm{ML}}, \mathrm{N}_{\mathrm{MH}}$, with the calculated results.
b) Use the Pulse input to simulate an input waveform shown below using SPICE. Compare $t_{\text {PHL }}$ and $t_{\text {PLH }}$ with your hand calculations.

Problem 3

Consider the circuit below, which consists of an NMOS device and PMOS current source load.
a) Calculate the width of the PMOS device so its saturation current is $50 \mu \mathrm{~A}$.
b) Calculate $\mathrm{V}_{\mathrm{M}}, \mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{OL}}$. Remember, for hand calculations we assume $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{MAX}}$, and $\mathrm{V}_{\mathrm{OL}}=\mathrm{V}_{\mathrm{MIN}}$.
c) Calculate the voltage gain of this circuit, when $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{M}}$.
d) Calculate $V_{\text {Out }}$ when $V_{\text {IN }}=3$.

MIT OpenCourseWare
http://ocw.mit.edu
6.012 Microelectronic Devices and Circuits

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

