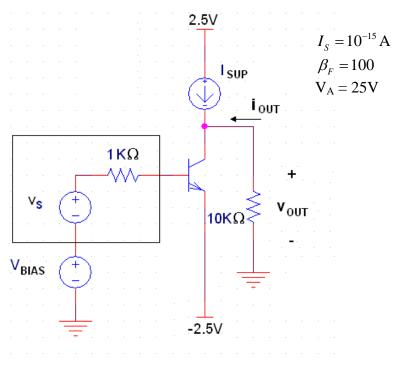

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.012 Microelectronic Devices and Circuits Spring 2009

April 24, 2009 - Homework 7 Due May 1, 2009

Problem 1


You are given a CS amplifier and NMOS device parameters shown below. The current source supply provides $100\mu\text{A}$ and has an infinite output resistance, (i.e. ISUP = $100~\mu\text{A}$ and roc $\rightarrow \infty$). The current source supply must have at least 0.5~V across it in order to maintain the high output resistance.

- a) Calculate V_{BIAS} such that $V_{OUT} = 0$ V.
- b) Draw the two-port model and calculate the two-port parameters R_{in} , R_{out} , and A_{v} .
- c) Calculate the overall voltage gain v_{out}/v_s .
- d) Calculate the output voltage swing.

Problem 2

You are given a CE amplifier and NPN device parameters shown below. The current source supply provides $250\mu\text{A}$ and has an output resistance equal to r_0 of the NPN (i.e. $I_{SUP} = 250\mu\text{A}$ and $r_{oc} = r_o$). The current source supply must have at least 0.5V across it in order to maintain the high output resistance.

- a) Calculate V_{BIAS} such that $V_{OUT} = 0$ V.
- b) Draw the two-port model and calculate the two-port parameters R_{in} , R_{out} , and A_{v} .
- c) Calculate the overall voltage gain v_{out}/v_s .
- d) Calculate the output voltage swing. Assume $V_{\text{CEsat}} = 0.2V$.

Problem 3

Howe and Sodini P8.30

Problem 4

Howe and Sodini P8.39, $V_{TOn} = 0.7V$

MIT OpenCourseWare http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.