Lecture 2 Semiconductor Physics (I)

Outline

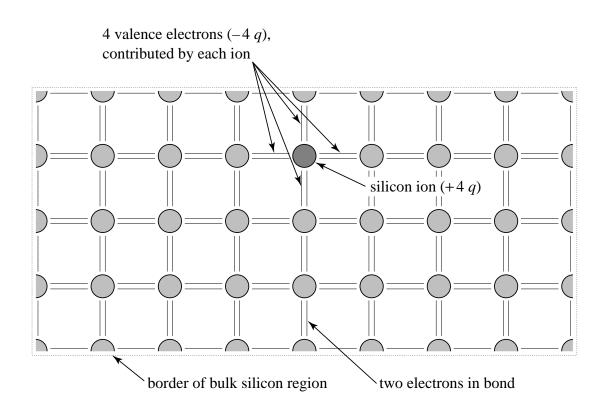
- Intrinsic bond model : electrons and holes
- Generation and recombination
- Intrinsic semiconductor
- Doping: Extrinsic semiconductor
- Charge Neutrality

Reading Assignment:

Howe and Sodini; Chapter 2. Sect. 2.1-2.3

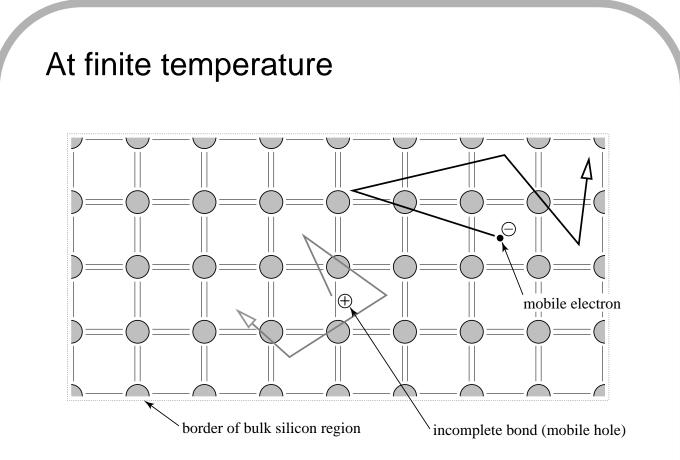
1. Silicon bond model: electrons and holes

Si is Column IV of the periodic table:


	IIIA	IVA	VA	VIA
	5	6	7	- 8
	В	С	Ν	0
	- 13	14	15	16
IIB	AI	Si	Ρ	S
30	31	32	33	34
Zn	Ga	Ge	As	Se
48	49	50	51	52
Cd	In	Sn	Sb	Те

- Electronic structure of silicon atom:
 - 10 core electrons (tightly bound)
 - 4 valence electrons (loosely bound, responsible for most of the chemical properties
- Other semiconductors:
 - Ge, C (diamond form)
 - GaAs, InP, InGaAs, InGaAsP, ZnSe, CdTe (on the average, 4 valence electrons per atom)

<image>


- Diamond lattice: atoms tetrahedrally bonded by sharing valence electrons
 - covalent bonding
- Each atom shares 8 electrons
 - low energy situation
- Si atomic density : 5 x 10²² cm⁻³

Simple "flattened" model of Si crystal

At 0K:

- All bonds are satisfied
 - \Rightarrow all valence electrons engaged in bonding
- No "free" electrons

- Finite thermal energy
- Some bonds are broken
- "free" electrons
 - Mobile negative charge, -1.6 x 10^{-19} C
- "free" holes
 - Mobile positive charge, +1.6 x 10⁻¹⁹ C

Caution: picture is misleading!

Electrons and holes in semiconductors are "fuzzier": they span many atomic sites

A few definitions:

- In 6.012, "electron' means free electron
- Not concerned with bonding electrons or core electrons
- Define:
 - n = (free) electron concentration [cm⁻³]
 - $p \equiv$ hole concentration [cm⁻³]

2. Generation and Recombination

<u>GENERATION</u>=break-up of covalent bond to form electron and hole pairs

- Requires energy from thermal or optical sources (or external sources)
- Generation rate: $\mathbf{G} = \mathbf{G}(\mathbf{th}) + \mathbf{G}_{opt} + \dots [\mathbf{cm}^{-3} \bullet \mathbf{s}^{-1}]$
- In general, atomic density >> n, p \Rightarrow

$$\mathbf{G} \neq \mathbf{f}(\mathbf{n},\mathbf{p})$$

 supply of breakable bonds virtually inexhaustible

<u>RECOMBINATION</u>=formation of covalent bond by bringing together electron and hole

- Releases energy in thermal or optical form
- Recombination rate: $\mathbf{R} = [\mathbf{cm}^{-3} \bullet \mathbf{s}^{-1}]$
- 1 recombination event requires 1 electron + 1 hole \Rightarrow $R \propto n \bullet p$

Generation and recombination most likely at surfaces where periodic crystalline structure is broken

3. Intrinsic semiconductor

THERMAL EQUILIBRIUM

Steady state + absence of external energy sources

Generation rate in thermal equilibrium: $G_o = f(T)$

Recombination rate in thermal equilibrium: $R_o \propto n_o \bullet p_o$

In thermal equilibrium: Every process and its inverse must be EQUAL

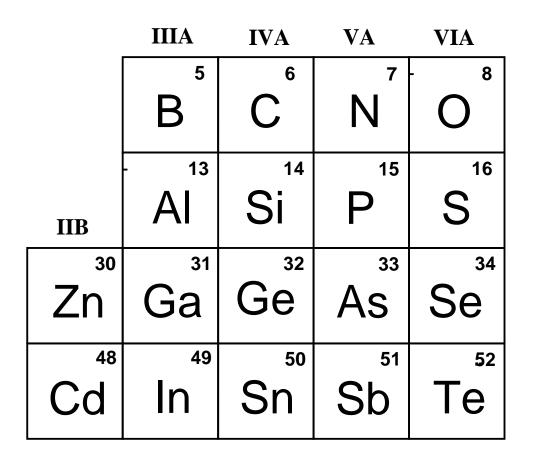
$$G_{o}(T) = R_{o} \Rightarrow n_{o}p_{o} = k_{o}G_{o}(T)$$

$$n_{i} \equiv intrinsic \ carrier \ concentration \ [cm^{-3}]$$

In Si at 300 K ("room temperature"): $n_i \approx 1 \times 10^{10}$ cm⁻³ In a sufficiently pure Si wafer at 300K ("intrinsic semiconductor):

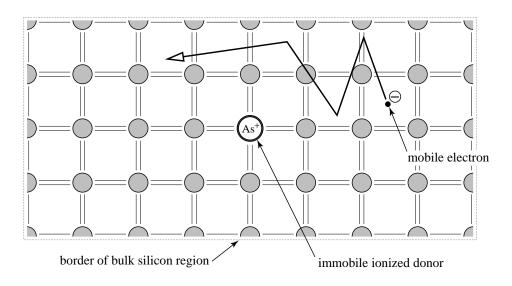
$$\boldsymbol{n_o} = \boldsymbol{p_o} = \boldsymbol{n_i} \approx 1 \times 10^{10} \ \boldsymbol{cm}^{-3}$$

n_i is a very strong function of temperature


$$T \uparrow \Rightarrow n_i \uparrow$$

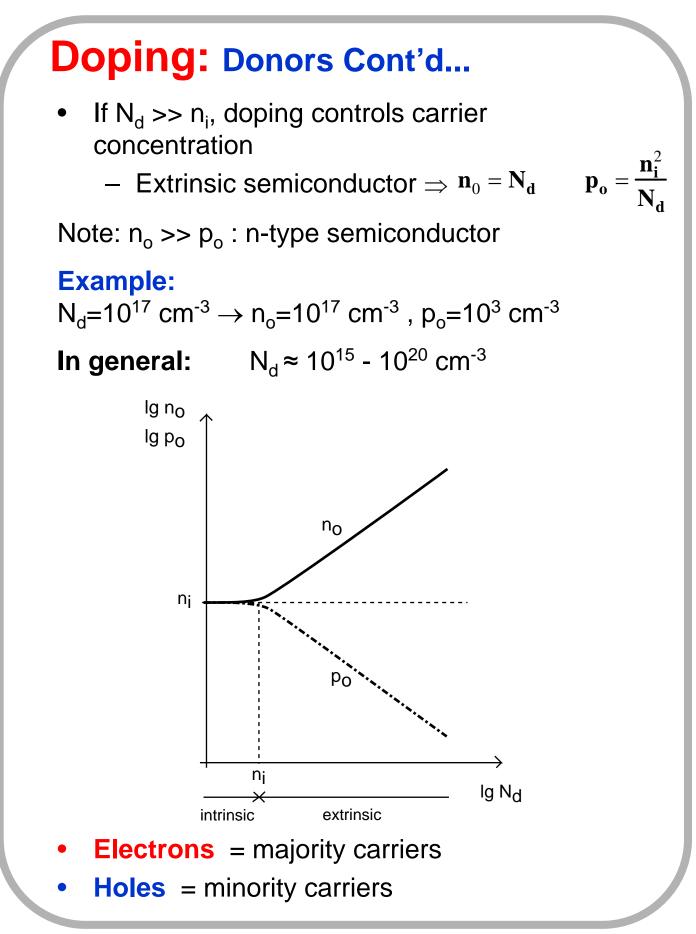
4. Doping

Doping = engineered introduction of foreign atoms to modify semiconductor electrical properties


A. DONORS:

- Introduce electrons to semiconductors (but not holes)
- For Si, group V elements with 5 valence electrons (As, P, Sb)

Doping: Donors Cont'd...

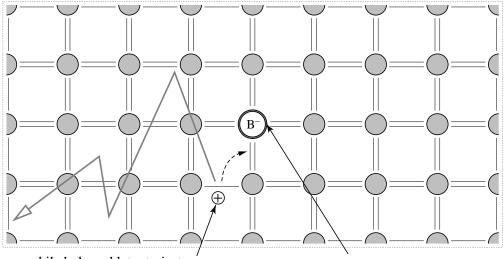

- 4 electrons participate in bonding
- 5th electron easy to release \Rightarrow
 - at room temperature, each donor releases
 1 electron that is available for conduction
- Donor site become positively charged (fixed charge)

Define:

 $N_d \equiv$ donor concentration [cm⁻³]

If N_d << n_i, doping is irrelevant
 – Intrinsic semiconductor→n_o=p_o=n_i

Doping : Acceptors

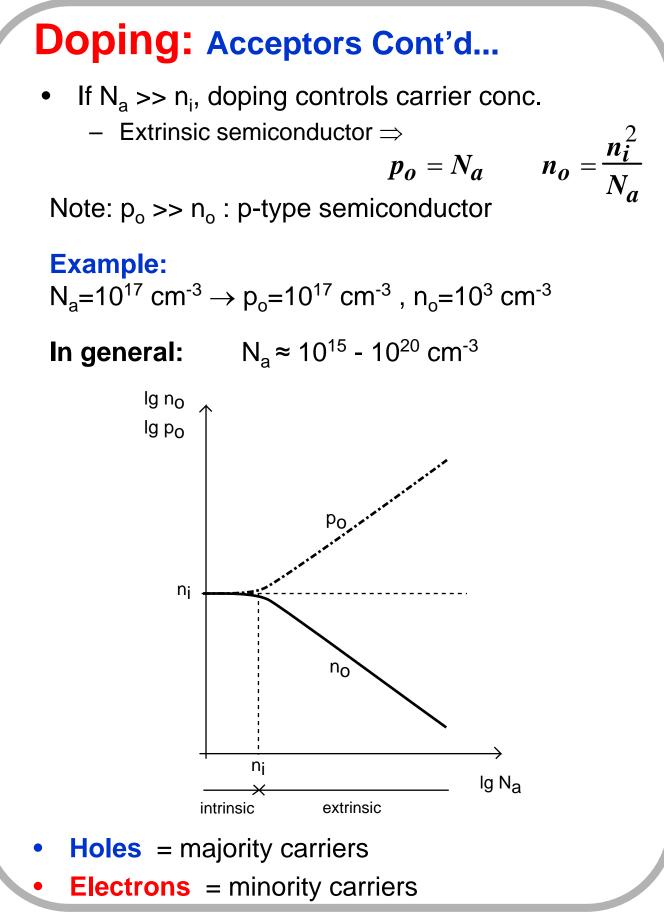

A. ACCEPTORS:

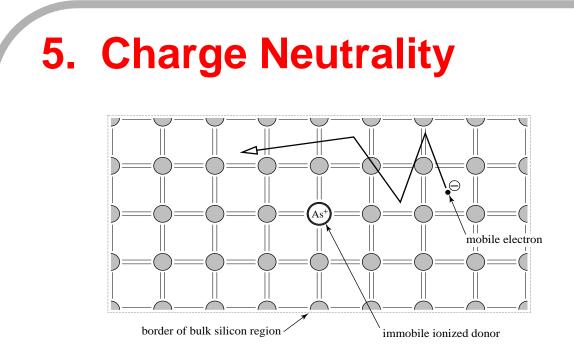
- Introduce holes to semiconductors (but not electrons)
- For Si, group III elements with 3 valence electrons (B)

	IIIA	IVA	VA	VIA
	5 [6	7	8
	В	С	Ν	O
	- 13	14	15	16
IIB	AI	Si	Ρ	S
30	31	32	33	34
Zn	Ga	Ge	As	Se
48	49	50	51	52
Cd	In	Sn	Sb	Те

Doping: Acceptors Cont'd...

- 3 electrons participate in bonding
- 1 bonding site "unsatisfied" making it easy to "accept" neighboring bonding electron to complete all bonds ⇒
 - at room temperature, each acceptor "releases" 1 hole that is available for conduction
- Acceptor site become negatively charged (fixed charge)


mobile hole and later trajectory


immobile negatively ionized acceptor

Define:

 $N_a \equiv acceptor concentration [cm⁻³]$

- If N_a << n_i, doping is irrelevant
 - Intrinsic semiconductor $\rightarrow n_0 = p_0 = n_i$

- The semiconductor remains charge neutral even when it has been doped
 - \Rightarrow Overall charge neutrality must be satisfied
- In general:

$$\rho = \mathbf{q} \left(\mathbf{p}_{\mathbf{o}} - \mathbf{n}_{\mathbf{o}} + \mathbf{N}_{\mathbf{d}} - \mathbf{N}_{\mathbf{a}} \right)$$

Let us examine this for $N_d = 10^{17}$ cm⁻³, $N_a = 0$ We solved this in an earlier example:

$$n_o = N_d = 10^{17} \text{ cm}^{-3}, \quad p_o = \frac{n_i^2}{N_d} = 10^3 \text{ cm}^{-3}$$

Hence:

$$\rho \neq 0 !!$$

What is wrong??

Charge Neutrality cont'd...

Nothing wrong!

We just made the approximation when we assumed that $n_{\rm o}$ = $N_{\rm d}$

We should really solve the following system of equations (for $N_a=0$):

$$p_o - n_o + N_d = 0$$
$$n_o p_o = n_i^2$$

Solution and discussion tomorrow in recitation.

Error in most practical circumstances too small to matter!

Summary Why are IC's made out of Silicon?

SILICON IS A SEMICONDUCTOR a very special class of materials

- Two types of "carriers" (mobile charge particles):
 - electrons and holes
- Carrier concentrations can be controlled over many orders of magnitude by addition "dopants"
 - selected foreign atoms
- Important Equations under Thermal Equilibrium conditions
 - Charge Neutrality
 - Law of Mass Action

$$p_o - n_o + N_d - N_a = 0$$
$$n_o p_o = n_i^2$$

6.012 Microelectronic Devices and Circuits Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.