Lecture 7

PN Junction and MOS Electrostatics(IV) <u>Metal-Oxide-Semiconductor Structure (contd.)</u>

Outline

- 1. Overview of MOS electrostatics under bias
- 2. Depletion regime
- 3. Flatband
- 4. Accumulation regime
- 5. Threshold
- 6. Inversion regime

Reading Assignment: Howe and Sodini, Chapter 3, Sections 3.8-3.9

Application of bias:

- Built-in potential across MOS structure increases from ϕ_B to $\phi_B + V_{GB}$
- Oxide forbids current flow \Rightarrow
 - J=0 everywhere in semiconductor
 - Need drift = -diffusion in SCR
- Must maintain boundary condition at Si/SiO₂ interface

 $- E_{ox} / E_{s} \approx 3$

How can this be accommodated simultaneously? \Rightarrow *quasi-equilibrium situation* with potential build-up across MOS equal to $\phi_B + V_{GB}$ Important consequence of quasi-equilibrium:

 \Rightarrow Boltzmann relations apply in semiconductor

[they were derived starting from $J_n = J_p = 0$]

$$n(x) = n_i e^{q \phi(x)/kT}$$
$$p(x) = n_i e^{-q \phi(x)/kT}$$

and

$$np = n_i^2$$
 at every x

2. Depletion regime

For V_{GB} >0, metal attracts electrons and repels holes \Rightarrow **Depletion region widens**

For $V_{GB} < 0$, metal repels electrons and attracts holes \Rightarrow **Depletion region shrinks**

In depletion regime, all results obtained for thermal equilibrium apply if $\phi_B \rightarrow \phi_B + V_{GB}$.

For example:

Depletion region thickness:

$$x_d(V_{GB}) = \frac{\varepsilon_s}{C_{ox}} \left[\sqrt{1 + \frac{2C_{ox}^2(\phi_B + V_{GB})}{\varepsilon_s q N_a}} - 1 \right]$$

Potential drop across semiconductor SCR:

$$V_B(V_{GB}) = \frac{qN_a x_d^2}{2\varepsilon_s}$$

Surface potential

$$\phi(0) = \phi_p + V_B(V_{GB})$$

Potential drop across oxide:

$$V_{ox}(V_{GB}) = \frac{qN_a x_d t_{ox}}{\varepsilon_{ox}}$$

6.012 Spring 2009

3. Flatband

At a certain negative V_{GB} , depletion region is wiped out \Rightarrow *Flatband*

Flatband Voltage:

 $V_{GB} = V_{FB} = -\phi_B = -(\phi_{N^+} - \phi_p)$

4. Accumulation regime

If $V_{GB} < V_{FB}$ accumulation of holes at Si/SiO₂ interface

5. Threshold

Back to $V_{GB} > 0$.

For sufficiently large $V_{GB}>0$, electrostatics change when $n(0)=N_a \Rightarrow threshold$.

Beyond *threshold*, we <u>cannot</u> neglect contributions of electrons towards electrostatics.

Let's compute the gate voltage (*threshold voltage*) that leads to n(0)=N.

Key assumption: use electrostatics of depletion (neglect electron concentration at threshold)

Computation of threshold voltage. Three step process:

First, compute potential drop in semiconductor at threshold. Start from:

$$n(0) = n_i e^{q\phi(0)/kT}$$

Solve for $\phi(0)$ at $V_{GB} = V_T$:

$$\phi(0)\big|_{V_{GB}=V_T} = \frac{kT}{q} \bullet \ln \frac{n(0)}{n_i}\Big|_{V_{GB}=V_T} = \frac{kT}{q} \bullet \ln \frac{N_a}{n_i} = -\phi_p$$

Computation of threshold voltage (contd.)

Second, compute potential drop in oxide at threshold.

Obtain $x_d(V_T)$ using relationship between V_B and x_d in depletion:

$$V_B(V_{GB} = V_T) = \frac{qN_a x_d^2(V_T)}{2\varepsilon_s} = -2\phi_p$$

Solve for x_d at $V_{GB} = V_T$:

$$x_d(V_T) = x_d \max = \sqrt{\frac{2\varepsilon_s(-2\phi_p)}{qN_a}}$$

Then:

$$V_{ox}(V_T) = E_{ox}(V_T)t_{ox} = \frac{qN_a x_d(V_T)}{\varepsilon_{ox}}t_{ox} = \frac{1}{C_{ox}}\sqrt{2\varepsilon_s qN_a(-2\phi_p)}$$

Solve for V_T:

$$V_{GB} = V_T = V_{FB} - 2\phi_P + \frac{1}{C_{ox}}\sqrt{2\varepsilon_s q N_a(-2\phi_p)}$$

Key dependencies:

- If $N_a \uparrow \Rightarrow V_T \uparrow$. The higher the doping, the more voltage required to produce $n(0) = N_a$
- If $C_{ox} \uparrow (t_{ox} \downarrow) \Rightarrow V_T \downarrow$. The thinner the oxide, the less voltage dropped across the oxide.

6. Inversion

What happens for $V_{GB} > V_T$?

More electrons at Si/SiO₂ interface than acceptors \Rightarrow *inversion*.

Electron concentration at Si/SiO₂ interface modulated by $V_{GB} \Rightarrow V_{GB} \uparrow \rightarrow n(0) \uparrow \rightarrow |Q_N| \uparrow$: **Field-effect control of mobile charge density!** [essence of MOSFET]

Want to compute Q_N vs. V_{GB} [*charge-control relation*]

Make *sheet charge approximation*: electron layer at Si/SiO₂ is much thinner than any other dimension in problem (t_{ox}, x_d) .

Charge-Control Relation

To derive the charge-control relation, let's look at the overall electrostatics:

Charge-Control Relation (contd.)

Key realization:

 $n(0) \propto e^{q\phi(0)/kT}$

$$qN_a x_d \propto \sqrt{\phi(0)}$$

Hence, as $V_{GB} \uparrow$ and $\phi(0) \uparrow$, n(0) will change a lot, but $|Q_d|$ will change very little.

Several consequences:

• x_d does not increase much beyond threshold:

$$x_d(inv.) \approx x_d(V_T) = \sqrt{\frac{2\varepsilon_s(-2\phi_p)}{qN_a}} = x_{d,\max}$$

• V_B does not increase much beyond $V_B(V_T) = -2\phi_P$ (*a thin sheet of electrons does not contribute much to* V_B .):

$$V_{\boldsymbol{B}}(\boldsymbol{inv.}) \approx V_{\boldsymbol{B}}(V_{\boldsymbol{T}}) = -2\phi_{\boldsymbol{P}}$$

Charge-Control Relation (contd..)

- All extra voltage beyond V_T used to increase inversion charge Q_n . Think of it as capacitor:
 - Top plate: metal gate
 - Bottom plate: inversion layer

$$Q = CV$$

$$\Rightarrow$$

$$Q_N = -C_{ox}(V_{GB} - V_T) \qquad \text{for } V_{GB} > V_T$$

Coul/cm²

Existence of Q_N and control over Q_N by V_{GB} \Rightarrow key to MOS electronics

What did we learn today?

Summary of Key Concepts

6.012 Microelectronic Devices and Circuits Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.