Lecture 8 MOSFET(I)

MOSFET I-V CHARACTERISTICS

Outline

1. MOSFET: cross-section, layout, symbols
2. Qualitative operation
3. I-V characteristics

Reading Assignment:

Howe and Sodini, Chapter 4, Sections 4.1-4.3

1. MOSFET: layout, cross-section, symbols

(a)

(b)

Key elements:

- Inversion layer under gate (depending on gate voltage)
- Heavily doped regions reach underneath gate \Rightarrow
- inversion layer to electrically connect source and drain
- 4-terminal device:
- body voltage important

Circuit symbols

Two complementary devices:

- n -channel device (n -MOSFET) on p -substrate - uses electron inversion layer
- p-channel device (p-MOSFET) on n-substrate
- uses hole inversion layer

(a) n-channel MOSFET

(b) p-channel MOSFET

2. Qualitative Operation

- Drain Current $\left(I_{D}\right)$: proportional to inversion charge and the velocity that the charge travels from source to drain
- Velocity: proportional to electric field from drain to source
- Gate-Source Voltage ($V_{G S}$): controls amount of inversion charge that carries the current
- Drain-Source Voltage ($V_{D S}$): controls the electric field that drifts the inversion charge from the source to drain

Want to understand the relationship between the drain current in the MOSFET as a function of gate-to-source voltage and drain-to-source voltage.

Initially consider source tied up to body (substrate or back)

Three Regions of Operation: Cut-off Region

- MOSFET:
$-\mathrm{V}_{\mathrm{GS}}<\mathrm{V}_{\mathrm{T}}$, with $\mathrm{V}_{\mathrm{DS}} \geq 0$
- Inversion Charge $=0$
- V_{DS} drops across drain depletion region
- $\mathrm{I}_{\mathrm{D}}=0$

Three Regions of Operation: Linear or Triode Region

Electrons drift from source to drain \Rightarrow electrical current!

- $\mathrm{V}_{\mathrm{GS}} \uparrow \Rightarrow\left|\mathrm{Q}_{\mathrm{N}},\right| \uparrow \Rightarrow \mathrm{I}_{\mathrm{D}} \uparrow$
- $\mathrm{V}_{\mathrm{DS}} \uparrow \Rightarrow \mathrm{E}_{\mathrm{y}}, \uparrow \Rightarrow \mathrm{I}_{\mathrm{D}} \uparrow \quad \mathrm{V}_{\mathrm{DS}} \ll \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$

Three Regions of Operation: Saturation Region $\mathbf{V}_{\text {DS }}>\mathbf{V}_{\mathrm{GS}}-\mathbf{V}_{\mathrm{T}}$

- $\mathrm{V}_{\mathrm{GS}}>\mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{GD}}<\mathrm{V}_{\mathrm{T}}-->\mathrm{V}_{\mathrm{DS}}>\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$

I_{D} is independent of $\mathrm{V}_{\mathrm{DS}}: \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\text {dsat }}$
Electric field in channel cannot increase with $V_{D S}$

3. I-V Characteristics (Assume $\mathbf{V}_{\mathrm{SB}}=\mathbf{0}$)

Geometry of problem:

All voltages are referred to the Source

General expression of channel current

Current can only flow in the y-direction:
Total channel flux:

$$
I_{y}=W \bullet Q_{N}(y) \bullet v_{y}(y)
$$

Drain current is equal to minus channel current:

$$
I_{D}=-W \bullet Q_{N}(y) \bullet v_{y}(y)
$$

I-V Characteristics (Contd.)

$$
I_{D}=-W \bullet Q_{N}(y) \bullet v_{y}(y)
$$

Re-write equation in terms of voltage at location $\mathrm{y}, \mathrm{V}(\mathrm{y})$:

- If electric field is not too high:

$$
v_{y}(y)=-\mu_{n} \bullet E_{y}(y)=\mu_{n} \bullet \frac{d V}{d y}
$$

- For $\mathrm{Q}_{\mathrm{N}}(\mathrm{y})$, use charge-control relation at location y :

$$
Q_{N}(y)=-C_{o x}\left[V_{G S}-V(y)-V_{T}\right]
$$

for $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}(\mathrm{y}) \geq \mathrm{V}_{\mathrm{T}}$.
Note that we assumed that V_{T} is independent of y . See discussion on body effect in Section 4.4 of text.

All together the drain current is given by:
$I_{D}=W \bullet \mu_{n} C_{o x}\left[V_{G S}-V(y)-V_{T}\right] \bullet \frac{d V(y)}{d y}$
Simple linear first order differential equation with one un-known, the channel voltage $\mathrm{V}(\mathrm{y})$.

I-V Characteristics (Contd..)

Solve by separating variables:

$$
I_{D} d y=W \bullet \mu_{n} C_{o x}\left[V_{G S}-V(y)-V_{T}\right] \bullet d V
$$

Integrate along the channel in the linear regime subject the boundary conditions:

- Source: $\mathrm{y}=0, \mathrm{~V}(0)=0$
- Drain: $\mathrm{y}=\mathrm{L}, \mathrm{V}(\mathrm{L})=\mathrm{V}_{\mathrm{DS}}$ (linear regime)

Then:

$$
I_{D} \int_{0}^{L} d y=W \cdot \mu_{n} C_{o x} \int_{0}^{V_{D S}}\left[V_{G S}-V(y)-V_{T}\right] \bullet d V
$$

Resulting in:

$$
\boldsymbol{I}_{\boldsymbol{D}}[\boldsymbol{y}]_{0}^{\boldsymbol{L}}=\boldsymbol{I}_{\boldsymbol{D}} L=\boldsymbol{W} \cdot \mu_{\boldsymbol{n}} \boldsymbol{C}_{\boldsymbol{o x}}\left[\left(\boldsymbol{V}_{\boldsymbol{G S}}-\frac{\boldsymbol{V}}{2}-\boldsymbol{V}_{\boldsymbol{T}}\right) \boldsymbol{V}\right]_{0}^{V_{\boldsymbol{D S}}}
$$

$$
I_{D}=\frac{W}{L} \bullet \mu_{n} C_{o x}\left\lfloor V_{G S}-\frac{V_{D S}}{2}-V_{T}\right\rfloor \bullet V_{D S}
$$

I-V Characteristics (Contd...)

$I_{D}=\frac{W}{L} \bullet \mu_{\boldsymbol{n}} C_{o x}\left\lfloor V_{G S}-\frac{V_{D S}}{2}-V_{T}\right\rfloor \bullet V_{D S}$
for $V_{D S}<V_{G S}-V_{T}$

Key dependencies:

- $\mathrm{V}_{\mathrm{DS}} \uparrow \rightarrow \mathrm{I}_{\mathrm{D}} \uparrow$ (higher lateral electric field)
- $\mathrm{V}_{\mathrm{GS}} \uparrow \rightarrow \mathrm{I}_{\mathrm{D}} \uparrow$ (higher electron concentration)

This is the linear or triode region:
It is linear if $\mathrm{V}_{\mathrm{DS}} \ll \mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$

I-V Characteristics (Contd....)
 Two important observations

1. Equation only valid if $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}(\mathrm{y}) \geq \mathrm{V}_{\mathrm{T}}$ at every \mathbf{y}. Worst point is $\mathrm{y}=\mathrm{L}$, where $\mathrm{V}(\mathrm{y})=\mathrm{V}_{\mathrm{DS}}$, hence, equation is valid if

$V_{D S} \leq V_{G S}-V_{T}$

I-V Characteristics (Contd.....)

Two important observations
2. As V_{DS} approaches $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$, the rate of increase of I_{D} decreases.

Reason:

As y increases down the channel, $\mathrm{V}(\mathrm{y}) \uparrow,\left|\mathrm{Q}_{\mathrm{N}}(\mathrm{y})\right| \downarrow$, and $\mathrm{E}_{\mathrm{y}}(\mathrm{y}) \uparrow$ (fewer carriers moving faster)
\Rightarrow inversion layer thins down from source to drain
$\Rightarrow \mathrm{I}_{\mathrm{D}}$ grows more slowly.

I-V Characteristics (Contd......)

Drain Current Saturation

As $V_{D S}$ approaches

$$
V_{D S s a t}=V_{G S}-V_{T}
$$

increase in E_{y} compensated by decrease in $\left|\mathrm{Q}_{\mathrm{N}}\right|$
$\Rightarrow I_{D}$ saturates when $\left|Q_{N}\right|$ equals 0 at drain end.

Value of drain saturation current:
$I_{D s a t}=I_{D l i n}\left(V_{D S}=V_{D S s a t}=V_{G S}-V_{T}\right)$
Then

$$
I_{D s a t}=\left[\frac{W}{L} \cdot \mu_{n} C_{o x}\left(V_{G S}-\frac{V_{D S}}{2}-V_{T}\right) \bullet V_{D S}\right\rfloor_{V_{D S}=V_{G S}-V_{T}}
$$

$$
\boldsymbol{I}_{\boldsymbol{D} \boldsymbol{s} \boldsymbol{a t}}=\frac{1}{2} \frac{\boldsymbol{W}}{L} \mu_{\boldsymbol{n}} \boldsymbol{C}_{\boldsymbol{o x}}\left[V_{\boldsymbol{G S}}-\boldsymbol{V}_{\boldsymbol{T}}\right]^{2}
$$

Will talk more about saturation region next time.

I-V Characteristics (Contd.......)

Output Characteristics

Transfer characteristics:

Output Characteristics

Summary of Key Concepts

- MOSFET Output Characteristics

I-V Characteristics in Cutoff Region

$$
\mathbf{V}_{G S}<\mathbf{V}_{T} \quad \mathbf{I}_{\mathrm{D}}=0
$$

I-V Characteristics in Linear Region $\mathbf{V}_{\mathrm{DS}}<\mathbf{V}_{\mathrm{GS}}-\mathbf{V}_{\mathrm{T}}$

$$
I_{D}=\frac{W}{L} \bullet \mu_{n} C_{o x}\left\lfloor V_{G S}-\frac{V_{D S}}{2}-V_{T}\right\rfloor \bullet V_{D S}
$$

I-V Characteristics in Saturation Region $\mathbf{V}_{\mathrm{DS}} \geq \mathbf{V}_{\text {GS }}-\mathbf{V}_{\mathrm{T}}$

$$
\boldsymbol{I}_{\boldsymbol{D} \boldsymbol{s a t}}=\frac{\boldsymbol{W}}{2 \boldsymbol{L}} \mu_{\boldsymbol{n}} \boldsymbol{C}_{\boldsymbol{o x}}\left(V_{G S}-V_{T}\right)^{2}
$$

MIT OpenCourseWare
http://ocw.mit.edu
6.012 Microelectronic Devices and Circuits

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

