Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)

Outline

- 1. The saturation region
- 2. Backgate characteristics

Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4

1. The Saturation Region

Geometry of problem

Regions of operation:

• **Cut-off:**
$$V_{GS} < V_T$$

- No inversion layer anywhere underneath the gate

$$\mathbf{I}_{\mathbf{D}} = \mathbf{0}$$

- *Linear:* $V_{GS} > V_T$ and $0 < V_{DS} < V_{GS} V_T$:
 - Inversion layer everywhere under the gate

$$I_D = \frac{W}{L} \bullet \mu_n C_{ox} \left[V_{GS} - \frac{V_{DS}}{2} - V_T \right] \bullet V_{DS}$$

The Saturation Region (contd.)

- *Saturation:* $V_{GS} > V_T$, and $V_{DS} > V_{GS}$ V_T :
 - Inversion layer "pinched-off" at drain end of channel

$$I_D = \frac{W}{2L} \bullet \mu_n C_{ox} [V_{GS} - V_T]^2$$

Output characteristics:

• Last lecture: To derive the above equations for I_D , we used for $Q_N(y)$, the charge-control relation at location y:

$$Q_N(y) = -C_{ox} \left[V_{GS} - V(y) - V_T \right]$$

for $V_{GS} - V(y) \ge V_T$. Note that we assumed that (a) $V_{BS} = 0 \Rightarrow V_{GS} = V_{GB}$, and (b) V_T is independent of y. See discussion on <u>body effect</u> in Section 4.4 of text.

The Saturation Region (contd..)

Review of Q_N , E_y , and V in linear regime as V_{DS} increases:

Ohmic drop along channel de-biases inversion layer \Rightarrow current saturation.

The Saturation Region (contd.)

What happens when $V_{DS} = V_{GS} - V_T$?

Charge control relation at drain:

$$Q_N(L) = -C_{ox} \left[V_{GS} - V_{DS} - V_T \right] = 0$$

No inversion layer at the drain end of channel ???!!! \Rightarrow *Pinch-off*.

At pinch-off:

- Charge control equation inaccurate around V_T ;
- Electron concentration small but not zero;
- Electrons move fast because electric field is very high;
- Dominant electrostatic feature
 - Acceptor charge
- There is no barrier to electron flow (on the contrary!).

The Saturation Region (contd.) What happens if $V_{DS} > V_{GS} - V_T$?

Depletion region separating pinch-off and drain widens

To first order, I_D does not increase past pinch-off:

$$I_D = I_{Dsat} \propto \frac{W}{2L} \bullet \mu_n C_{ox} \bullet \left[V_{GS} - V_T \right]^2$$

To second order, electrical channel length affected: $L\downarrow \Rightarrow I_D\uparrow$:

$$I_D \propto \frac{1}{L - \Delta L} \approx \frac{1}{L} \left[1 + \frac{\Delta L}{L} \right]$$

The Saturation Region (contd.)

Experimental finding:

$$\frac{\Delta L}{L} = \lambda (V_{DS} - V_{DSsat})$$

with

$$\lambda \propto \frac{1}{L}$$

$$\lambda = \frac{0.1 \,\mu m \bullet V^{-1}}{L}$$

For L = 1 μ m, increase of V_{DS} of 1V past V_{DSsat} results in increase in I_D of 10%.

Improved but approximate model for the drain current in saturation:

$$I_D \approx \frac{W}{2L} \bullet \mu_n C_{ox} \left(V_{GS} - V_T \right)^2 \left[1 + \lambda V_{DS} \right]$$

2. Backgate Characteristics There is a fourth terminal in a MOSFET: the body. What does it do? VDS ۱D VGS>Vth G D n+ n+ inversion laver V_{BS}depletion region р 0 В Key Assumption (thus far): $V_{BS} = 0 \Rightarrow V_{GS} = V_{GB}$

- Body contact allows application of bias to body with respect to inversion layer, V_{BS} .
- Only interested in $V_{BS} < 0$ (pn diode in reverse bias).
- Interested in effect on inversion layer \Rightarrow examine for V_{GS} > V_T (keep it constant).

Application of $V_{BS} < 0$ increases potential build-up across semiconductor:

$$-2\phi_p \Longrightarrow -2\phi_p - V_{BS}$$

Depletion region at the *source* must widen to produce required extra field:

Consequences of application of $V_{BS} < 0$:

- $-2\phi_p \Rightarrow -2\phi_p V_{BS}$
- $|Q_B| \uparrow \Rightarrow x_{dmax} \uparrow$
- Since V_{GS} is constant, V_{ox} unchanged
 - $\Rightarrow E_{ox}$ unchanged
 - $\Rightarrow |Q_S| = |Q_G|$ unchanged
- $|Q_S| = |Q_N| + |Q_B|$ unchanged, but $|Q_B| \uparrow \Rightarrow |Q_N| \downarrow$ - \Rightarrow inversion layer charge is reduced!

Figure by MIT OpenCourseWare.

For the same applied gate-to-source voltage V_{GS} , application of $V_{BS} < 0$ reduces the density of electrons in the inversion layer, in other words V_T \uparrow

How does V_T change with V_{BS} ? In V_T formula change $-2\phi_p$ to $-2\phi_p - V_{BS}$:

$$V_T^{GB}(V_{BS}) = V_{FB} - 2\phi_p - V_{BS} + \frac{1}{C_{ox}}\sqrt{2\varepsilon_s q N_a \left(-2\phi_p - V_{BS}\right)}$$

In MOSFETs, interested in V_T between gate and source:

$$V_{GB} = V_{GS} - V_{BS} \Longrightarrow V_T^{GB} = V_T^{GS} - V_{BS}$$

Then:

$$\mathbf{V}_{\mathrm{T}}^{\mathrm{GS}} = \mathbf{V}_{\mathrm{T}}^{\mathrm{GB}} + \mathbf{V}_{\mathrm{BS}}$$

And:

$$V_T^{GS}(V_{BS}) = V_{FB} - 2\phi_p + \frac{1}{C_{ox}}\sqrt{2\varepsilon_s q N_a \left(-2\phi_p - V_{BS}\right)} \equiv V_T(V_{BS})$$

In the context of the MOSFET, V_T is always defined in terms of *gate-to-source voltage*.

$$V_T(V_{BS}) = V_{FB} - 2\phi_p + \frac{1}{C_{ox}}\sqrt{2\varepsilon_s q N_a \left(-2\phi_p - V_{BS}\right)}$$

Define *backgate effect parameter* [units: V^{1/2}]:

$$\gamma = \frac{1}{C_{ox}} \sqrt{2\varepsilon_s q N_a}$$

And:

$$V_{To} = V_T (V_{BS} = 0)$$

Then:

$$V_T(V_{BS}) = V_{To} + \gamma \left[\sqrt{-2\phi_p - V_{BS}} - \sqrt{-2\phi_p} \right]$$

Triode Region $V_{DS} \sim 0.1 V$

What did we learn today?

Summary of Key Concepts

- MOSFET in saturation (V_{DS} ≥ V_{DSsat}): *pinch-off* point at drain-end of channel
 - Electron concentration small, but
 - Electrons move very fast;
 - Pinch-off point does not represent a barrier to electron flow
- I_{Dsat} increases slightly in saturation region due to *channel length modulation*
- Backbias affects V_T of MOSFET

6.012 Microelectronic Devices and Circuits Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.