
Lecture 13 
Digital Circuits (III) 

CMOS CIRCUITS 

Outline 
• CMOS Inverter: Propagation Delay 

• CMOS Inverter: Power Dissipation 

• CMOS: Static Logic Gates 

Reading Assignment: 
Howe and Sodini; Chapter 5, Sections 5.4 & 5.5 
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1. Complementary MOS (CMOS) Inverter 

• VIN = 0 ⇒ VOUT = VDD 

– VGSn = 0 ( < VTn ) ⇒ NMOS OFF 

– VSGp = VDD ( >  VTp ) ⇒ PMOS ON 

• VIN = VDD ⇒ VOUT = 0 

– VGSn = VDD ( > VTn ) ⇒ NMOS ON 

– VSGp = 0 ( <  VTp ) ⇒ PMOS OFF 

Circuit schematic: 

Basic

 

Operation:
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No power consumption while idle in any logic state!



2. CMOS inverter: Propagation delay 

Inverter propagation delay: time delay between input 

and output signals; figure of merit of logic speed. 

Typical propagation delays: < 100 ps. 

� C omplex logic system has 10-50 propagation delays 

per clock cycle. 

Estimation of t p : use squarewave at input 

Average propagation delay: 
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CMOS inverter: 
Propagation delay hightolow 

During early phases of discharge, NMOS is saturated 

and PMOS is cut-off. 

Time to discharge half of charge stored in CL:. 

� 
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CMOS inverter: 
Propagation delay hightolow (contd.) 

Then: 

tPHL ≈ 
CLVDD 

W n 

L n 

µn C ox VDD − VTn( )2 

QL t = 0−( )= CLVDD 

I Dn = 
W n 

2L n 

µn C ox VDD − VTn( )2 

Charge in CL at t=0-: 

Discharge Current (NMOS in saturation): 

Graphical Interpretation 
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CMOS inverter: 
Propagation delay lowtohigh 

During early phases of discharge, PMOS is saturated 

and NMOS is cut-off. 

Time to charge to half of final charge on CL:. 

� 
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CMOS inverter: 
Propagation delay hightolow (contd.) 

Charge in CL at t=∞ : 

QL(t = ∞) = CLVDD 

Charge Current (PMOS in saturation): 

p− IDp = 
W 

µpCox (VDD + VTp )
2 

2L p 

Then: 

tPLH ≈ 
W 

CLVDD 
2 p µpCox (VDD + VTp )

L p 

Key dependencies of propagation delay: 

• VDD ↑ ⇒ tp ↓ 
– Reason: VDD ↑ ⇒ Q(CL ) ↑, but ID goes as square↑ 

– Trade-off: VDD ↑ ⇒ more power consumed. 

• L ↓ ⇒ t ↓ p 

– Reason: L ↓ ⇒ I ↑D 

– Trade-off: manufacturing cost! 
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Components of load capacitance CL:
 

•	 Following logic gates: must add capacitance of 

each gate of every transistor the output is connected 

to. 

•	 Interconnect wires that connects output to input of 

following logic gates 

•	 Own draintobody capacitances 

CL = CG + Cwire + CDBn + CDBp 
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Gate Capacitance of Next Stage
 
• Estimation of the input capacitance: 

• n- and p-channel transistors in the next stage 

switch from triode through saturation to cutoff 

during a high-low or low-high transition 

• Requires nonlinear charge storage elements to 

accurately model 

• Hand Calculation use a rough estimate for an inverter 

Cin = Cox (WL)p + Cox (WL)n
 

CG for example circuit 

CG = Cox (WL)p2 + Cox (WL)n2 + 

Cox (WL) p3 + Cox (WL)n3 
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Interconnect Capacitance 
"Wires" consist 

the inverter to the 
of metal lines connecti 
input of the next stage 

ng the output of 

,metal interconnect 

...................... 
0.6pm deposited oxide 

0.5 pm thermal oxide 

,+ /-
I \ Y p (grounded) I 

\gate oxide 

The p+ layer (i.e., heavily doped with acceptors) under 
the thick thermal oxide (500 nm = 0.5 pm) and deposited 
oxide (600 nm = 0.6 pm) depletes only slightly when 
positive voltages appear on the metal line, so the 
capacitance is approximately the oxide capacitance: 

where the oxide thickness = 500 nm + 600 nm = 1.1 pm. 

( For large digital systems, the parasitic wiring capacitance 
can dominate the load capacitance 
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(Parasitic Capacitance-Drain/BuI
Depletion 
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Calculation of Parasitic Drain/Bulk Junction 
Depletion Capacitance 

• Depletion qJ(vD) is non-linear --> take the worst case and use the zero-

bias capacitance Cjo as a linear charge-storage element during the transient. 

• “Bottom” of depletion regions of the inverter’s drain diffusions 

contribute a depletion capacitance: 

CJBOT = CJn(WnLdiffn) + CJp(WpLdiffp) 

Where: CJn and CJp are the zero-bias bottom capacitance (fF/µm2) for the 

n-channel and p-channel MOSFET drain-bulk junction, respectively. 

Typical numbers: CJn and CJp are about 0.2 fF/µm2 

• “Sidewall” of depletion regions of the inverter’s drain diffusions make an 

additional contribution: 

CJSW = (Wn + 2Ldiffn)CJSWn + (Wp + 2Ldiffp)CJSWp 

Where: CJSWn and CJSWp are the zero-bias sidewall capacitance (F/µm) for 

the n-channel and p-channel MOSFET drain-bulk junction, respectively. 

Typical numbers: CJSWn and CJSWp are about 0.5 fF/µm 

The sum of CJBOT and CJSW is the total depletion capacitance, CDB 
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Power Dissipation
 
• Energy from power supply needed to charge up the capacitor:
 

Echarg e = ∫ VDDi(t)dt = VDDQ = VDD 
2CL
 

• Energy stored in capacitor: 

2Estore = 1/ 2CLVDD 

• Energy lost in p-channel MOSFET during charging: 

Ediss = Echarge − Estore = 1/ 2CLVDD 
2
 

•During discharge the n-channel MOSFET dissipates an 

identical amount of energy. 

•If the charge/discharge cycle is repeated f times/second, 

where f is the clock frequency, the dynamic power 

dissipation is: 

2P = 2Ediss * f = CLVDD f
 

In practice many gates do not change state every clock 

cycle which lowers the power dissipation. 
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CMOS Static Logic Gates 
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CMOS NAND Gate 
I-V Characteristics of n-channel devices 

-

(as 
VM 


0) 


@ Effective length of two n-channel devices is 2L, 

keff=kl/2=162/2 Recall k,=WILpnCOX 

@Effectivewidth of two p-channel devices is 2W, BUT 
worst case only one device is on 

k p e f f = k p 3  = k p 4  
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Calculation of static and transient
 
performance for NAND Gate
 

• kpeff = kneff is desirable for equal 

propagation delays and symmetrical transfer 

characteristics 

• Recall µ = 2µ n p 

• Therefore (W/L)n = (W/L)p 

for 2-input NAND gate 

•In general for an M-input NAND Gate 

 W M  W
  =  
 L  2  L n p 
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What did we learn today?
 

Summary of Key Concepts
 

Key features of CMOS inverter: 

•	 No current between power supply and ground while 

inverter is idle in any logic state 

•	 “rail-to-rail” logic 

–	 Logic levels are 0 and VDD. 


•	 High |Av| around the logic threshold
 
– ⇒ Good noise margins.
 

CMOS inverter logic threshold and noise margins 

engineered through Wn/Ln and W p/Lp. 

Key dependencies of propagation delay: 

•	 VDD ↑ ⇒ tp ↓ 

•	 L ↓ ⇒ t ↓ p 

Power dissipation CV2f
 

Sizing static gates
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