Lecture 25 Multistage Amplifiers (II) DC VOLTAGE AND CURRENT SOURCES

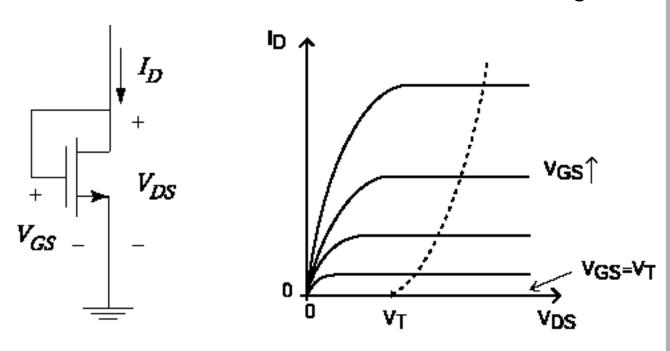
Outline

- 1. DC Voltage Sources
- 2. DC Current Sources and Sinks

Reading Assignment:

Howe and Sodini, Chapter 9, Sections 9-3-9.4 Final: Monday, May 19, 2009, 9am, Johnson Ice

Rink

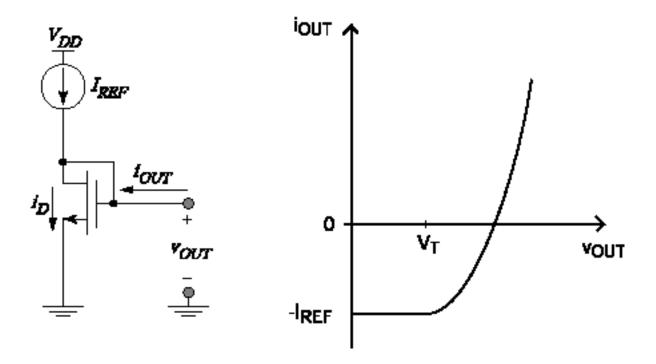

1. DC Voltage Sources

Characteristics of DC Voltage Sources:

- A well controlled output voltage
- Output voltage does not depend on current drawn from source ⇒ Low Thevenin

Resistance

Consider a MOSFET connected in "diode configuration"


I-V characteristics:

$$I_D = \frac{\mathbf{W}}{2\mathbf{L}} \mu_n \mathbf{C}_{ox} (\mathbf{V}_{GS} - \mathbf{V}_{Tn})^2 = \frac{\mathbf{W}}{2\mathbf{L}} \mu_n \mathbf{C}_{ox} (\mathbf{V}_{DS} - \mathbf{V}_{Tn})^2$$

Beyond the threshold voltage, the MOSFET looks like a "diode" with quadratic I-V characteristics

How does one synthesize a voltage source with this?

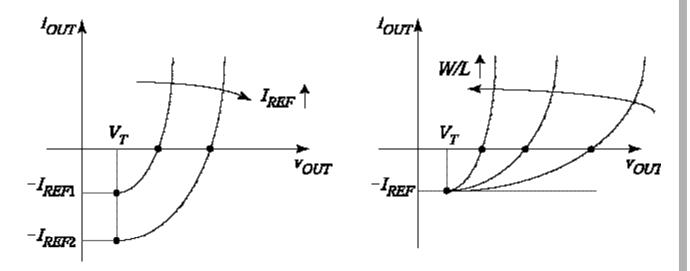
Assume a current source is available

 $V_{GS} = V_{DS}$ takes a value needed to sink current

$$i_D = I_{REF} + i_{OUT} = \frac{W}{2L} \mu_n C_{ox} (v_{OUT} - V_{Tn})^2$$

Then:

$$i_{OUT} = \frac{W}{2L} \mu_n C_{ox} (v_{OUT} - V_{Tn})^2 - I_{REF}$$

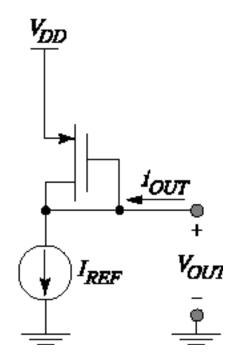

Solving for v_{OUT}:

$$v_{OUT} = V_{Tn} + \sqrt{\frac{I_{REF} + i_{OUT}}{\frac{W}{2L} \mu_n C_{ox}}}$$

Synthesizing Voltage Sources (contd.)

 v_{OUT} is a function of I_{REF} and W/L of MOSFET:

- $I_{REF} \uparrow \Rightarrow V_{OUT} \uparrow W/L \uparrow \Rightarrow V_{OUT} \downarrow$



Small Signal Equivalent Circuit Model:

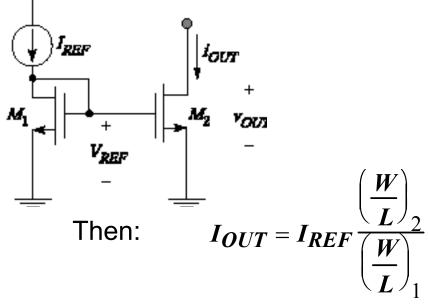
$$R_{out} = \frac{1}{g_m} || r_o \approx \frac{1}{g_m}$$

R_{out} is small (good!)

PMOS voltage source

Same operation and characteristics as NMOS voltage source. PMOS needs to be larger to attain the same R_{out} .

3. DC Current Sources and Sinks

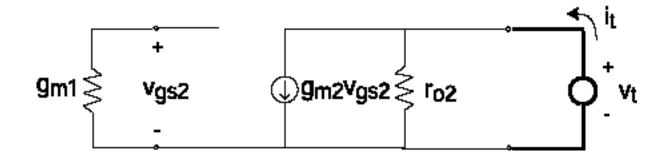

Characteristics of Current Sources

- A well controlled output current
- Supplied current does not depend on output voltage ⇒ High Norton Resistance

Connect a voltage source to the gate of another MOSF

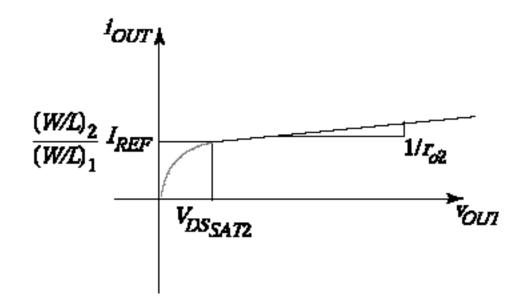
$$I_{OUT} \approx \frac{1}{2} \left(\frac{W}{L}\right)_{2} \mu_{n} C_{ox} (V_{REF} - V_{Tn})^{2}$$

$$I_{REF} \approx \frac{1}{2} \left(\frac{W}{L}\right)_{1} \mu_{n} C_{ox} (V_{REF} - V_{Tn})^{2}$$



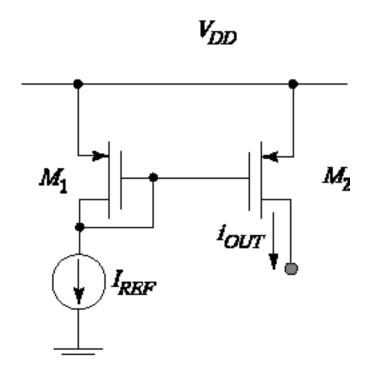
I_{OUT} scales with I_{REF} by W/L ratios of two MOSFETs ⇒ *Current Mirror Circuit*

Well "matched" transistors important.

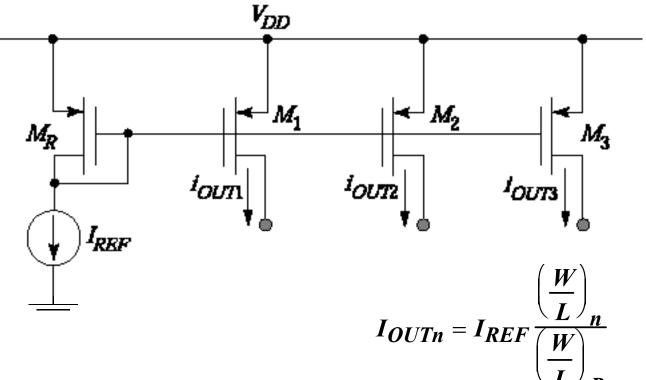

DC Current Sources and Sinks (contd.)

Small Signal Equivalent Circuit Model:

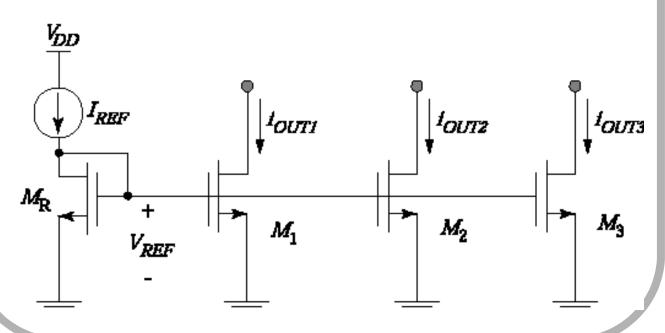
$$R_{out2} = r_{o2}$$


I-V characteristics of NMOS current source:

PMOS Current Source

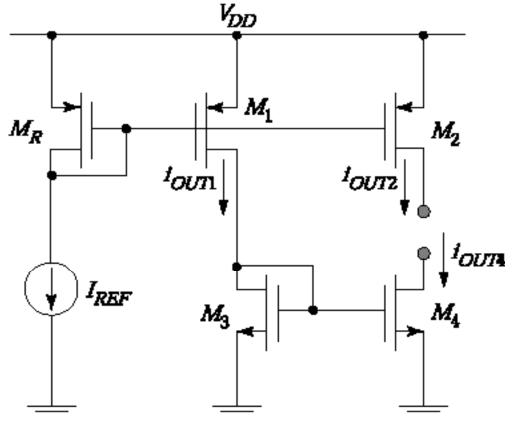

- NMOS current source sinks current to ground
- PMOS current source sources current from positive supply

PMOS Current Mirror:



3. Multiple Current Sources

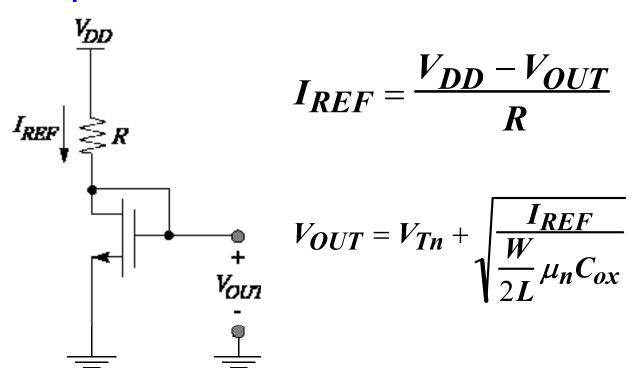
Since there is no DC gate current in MOSFET, we can tie up multiple current mirrors to single current



Similar idea with NMOS current sinks:

Multiple Current Sources and Sinks

Often, in a given circuit, we need current sources and sinks. We can build them all out of a single current source.


$$I_{OUT1} = I_{REF} \frac{\left(\frac{W}{L}\right)_{1}}{\left(\frac{W}{L}\right)_{R}}$$

$$I_{OUT2} = I_{REF} \frac{\left(\frac{W}{L}\right)_{2}}{\left(\frac{W}{L}\right)_{R}}$$

$$I_{OUT4} = I_{OUT1} \frac{\left(\frac{W}{L}\right)_4}{\left(\frac{W}{L}\right)_3} = I_{REF} \frac{\left(\frac{W}{L}\right)_4 \left(\frac{W}{L}\right)_1}{\left(\frac{W}{L}\right)_3 \left(\frac{W}{L}\right)_R}$$

Generating I_{REF}

Simple circuit:

For large W/L:
$$I_{REF} pprox rac{V_{DD} - V_{Tn}}{R}$$

- Advantages
 - I_{REF} set by value of resistor
- Disadvantages
 - V_{DD} also affects I_{REF}.
 - V_{Tn} and R are functions of temperature $\Rightarrow I_{REF}(T)$.

In the real world, more sophisticated circuits are used to generate I_{REF} that are V_{DD} and T independent.

What did we learn today?

Summary of Key Concepts

- Voltage source easily synthesized from reference current source using MOSFET in diode configuration
- Current source easily synthesized from current source using current mirror circuit.
- Multiple current sources and sinks with different magnitudes can be synthesized from a single current source.
- Voltage and current sources rely on the availability of well "matched" transistors in IC technology.

MIT OpenCourseWare
http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.