Recitation 6: p-n junction

Today's agenda:

1. p-n junction under thermal equilibrium (T.E.):

- space charge region (depletion layer)
- quasi-neutral region

2. p-n junction under reverse bias
3. depletion capacitance

p-n junction under T.E.

Yesterday we talked about p-n junction. We continue here:

1. When we bring the p and n interface together, what will happen?

Holes move from p-side to n -side and electrons diffuse from n -side to p -side, leaving behind space charges. The result is an electric field counteracting diffusion.

2. Space Charge Region (SCR): is a depletion region. $x_{\mathrm{no}}, x_{\mathrm{po}}, x_{\mathrm{no}}+x_{\mathrm{po}}=x_{\mathrm{do}}$.

What is the charge density in SCR? $q N_{\mathrm{a}}(-)$ and $q N_{\mathrm{d}}(+)$
And $q N_{\mathrm{a}} \cdot x_{\mathrm{po}}=q N_{\mathrm{d}} \cdot x_{\mathrm{no}} \Longrightarrow \frac{x_{\mathrm{po}}}{x_{\mathrm{no}}}=\frac{N_{\mathrm{d}}}{N_{\mathrm{a}}}$.
Quasi-Neutral Region (QNR)

3. Summaries of equations:

$x_{\mathrm{no}}, x_{\mathrm{po}}$ are determined by doping on both sides!

$$
\begin{aligned}
\text { Built-in potential } \phi_{\mathrm{B}} & =\phi_{\mathrm{n}}-\phi_{\mathrm{p}}=\frac{k T}{q} \ln \frac{N_{\mathrm{a}} N_{\mathrm{d}}}{n_{\mathrm{i}}^{2}} \\
x_{\mathrm{do}} & =x_{\mathrm{no}}+x_{\mathrm{po}}=\sqrt{\frac{2 \epsilon_{\mathrm{s}} \phi_{\mathrm{B}}}{q}\left(\frac{1}{N_{\mathrm{a}}}+\frac{1}{N_{\mathrm{d}}}\right)} \\
\text { Maximum field }\left|E_{\max }\right| & =\left|E_{\mathrm{o}}\right|=\sqrt{\frac{2 q \phi_{\mathrm{B}}}{\epsilon_{\mathrm{s}}} \frac{N_{\mathrm{a}} \cdot N_{\mathrm{d}}}{N_{\mathrm{a}}+N_{\mathrm{d}}}} \\
& =\frac{q N_{\mathrm{a}}}{\epsilon_{\mathrm{s}}} x_{\mathrm{po}}=\frac{q N_{\mathrm{d}}}{\epsilon_{\mathrm{s}}} x_{\mathrm{no}}
\end{aligned}
$$

4. If strongly asymmetric, the lowly doped side controls the electrostatics.

$$
p^{+} n: x_{\mathrm{po}} \ll x_{\mathrm{no}} \simeq x_{\mathrm{do}}=\sqrt{\frac{2 \epsilon_{\mathrm{s}} \phi_{\mathrm{B}}}{q} \frac{1}{N_{\mathrm{d}}}} \quad\left|E_{o}\right| \simeq \sqrt{\frac{2 q \phi_{\mathrm{B}}}{\epsilon_{\mathrm{s}}} N_{\mathrm{d}}}
$$

Examples

Now let us do some exercises before moving on to the next topic:

$\mathbf{N}_{\mathrm{d}}\left[\mathrm{cm}^{-3}\right]$	$\mathbf{N}_{\mathrm{a}}\left[\mathrm{cm}^{-3}\right]$	\mathbf{x}_{no}	\mathbf{x}_{po}	$\mathbf{E}_{\mathrm{o}}[\mathrm{V} / \mathrm{cm}]$	ϕ_{B}
10^{16}	10^{16}	216 nm	216 nm	$3.3 \times 10^{4} \mathrm{~V} / \mathrm{cm}$	720 mV
10^{19}	10^{16}	$3.14 \AA$	341 nm	$5.26 \times 10^{4} \mathrm{~V} / \mathrm{cm}$	900 mV

ϕ_{B} is easier to calculate first.

1. $\phi_{\mathrm{n}}=360 \mathrm{mV}, \phi_{\mathrm{p}}=-360 \mathrm{mV} \quad \phi_{\mathrm{B}}=\phi_{\mathrm{n}}-\phi_{\mathrm{p}}=720 \mathrm{mV}$

$$
\begin{aligned}
x_{\mathrm{no}} & =\sqrt{\frac{2 \epsilon_{\mathrm{s}} \phi_{\mathrm{B}}}{q\left(N_{\mathrm{a}}+N_{\mathrm{d}}\right)} \frac{\not \mathrm{N}_{\mathrm{a}}}{\lambda_{\mathrm{d}}}} \\
& =\sqrt{\frac{2 \times 1 \times 10^{-12}(\mathrm{~F} / \mathrm{cm}) \times 0.72(\mathrm{~V})}{1.6 \times 10^{-19}(\mathrm{C}) \times 2 \times 10^{16}\left(\mathrm{~cm}^{-3}\right)}}=\sqrt{4.66} \times 10^{-5} \mathrm{~cm}=216 \mathrm{~nm} \\
x_{\mathrm{po}} & =x_{\mathrm{no}} \quad(\text { symmetric }) \\
\left|E_{\mathrm{o}}\right| & =\sqrt{\frac{2 q \phi_{\mathrm{B}}}{\epsilon_{\mathrm{s}}} \frac{N_{\mathrm{a}} \cdot N_{\mathrm{d}}}{N_{\mathrm{a}}+N_{\mathrm{d}}}} \\
& =\sqrt{2 \times \frac{1.6 \times 10^{-19}(\mathrm{C}) \times 0.72(\mathrm{~V})}{1 \times 10^{-12}(\mathrm{~F} / \mathrm{cm})} \times \frac{10^{16} \times 10^{16}\left(\mathrm{~cm}^{-3}\right)^{2}}{2 \times 10^{16}\left(\mathrm{~cm}^{-3}\right)}}=3.3 \times 10^{4} \mathrm{~V} / \mathrm{cm}
\end{aligned}
$$

2. $\phi_{\mathrm{B}}=\phi_{\mathrm{n}}-\phi_{\mathrm{p}}=540 \mathrm{mV}+360 \mathrm{mV}=900 \mathrm{mV}$

$$
\begin{aligned}
x_{\mathrm{no}} & =\sqrt{\frac{2 \epsilon_{\mathrm{s}} \phi_{\mathrm{B}}}{q\left(N_{\mathrm{a}}+N_{\mathrm{d}}\right)} \frac{N_{\mathrm{a}}}{N_{\mathrm{d}}}}=3.41 \AA \quad \text { (really thin) } \\
x_{\mathrm{po}} & =\sqrt{\frac{2 \epsilon_{\mathrm{s}} \phi_{\mathrm{B}}}{q\left(N_{\mathrm{a}}+N_{\mathrm{d}}\right)} \frac{\not \gamma_{\mathrm{d}}}{N_{\mathrm{a}}}}=\sqrt{\frac{2 \epsilon_{\mathrm{s}} \phi_{\mathrm{B}}}{q} \frac{1}{N_{\mathrm{a}}}}=344 \mathrm{~nm} \\
\left|E_{\mathrm{o}}\right| & =\frac{q N_{\mathrm{a}}}{\epsilon_{\mathrm{s}} x_{\mathrm{po}}}=\frac{1.6 \times 10^{-19}(\mathrm{C}) \cdot 10^{16}\left(\mathrm{~cm}^{-3}\right)}{1 \times 10^{-12}(\mathrm{~F} / \mathrm{cm})} \times 3.41 \times 10^{-7} \mathrm{~cm}=5.26 \times 10^{4}(\mathrm{~V} / \mathrm{cm})
\end{aligned}
$$

Reverse Bias

Now what happens when we apply a reverse bias?

First: Bias convention for pn junction:

In your weblab experiment, when you have $V<0$, what current do you measure? $6 \times 10^{-15} \mathrm{~A}$ (very small).
With such a small current, the voltage drop across the QNRs will be really small, safely to ignore.
Then, where is the voltage drop? \Longrightarrow across SCR

Forward bias means $V>0$, moving " ϕ_{p} " up and reverse bias means $V<0$, moving " ϕ_{p} " down. Reverse bias V: barrier becomes $\phi_{\mathrm{B}}-V>\phi_{\mathrm{B}}$ (V is negative, so barrier increases).

Now, what happened to the electric field? Still zero in QNRs. Larger barriers means higher E-field, and $\therefore\left|E_{\max }\right|$ increases. This will mean we need more space charges to support the larger E-field. However, the charge density $q N_{\mathrm{a}}$ or $q N_{\mathrm{d}}$ can not change, $\Longrightarrow x_{\mathrm{n}}, x_{\mathrm{p}}$ widens.

It turns out a straightforward way to do the new calculations is: replace ϕ_{B} with $\phi_{\mathrm{B}}-V$. So:

$$
\begin{aligned}
x_{\mathrm{n}} & =x_{\mathrm{no}} \sqrt{\frac{\phi_{r m B}-V}{\phi_{\mathrm{B}}}}=x_{\mathrm{no}} \sqrt{1-\frac{V}{\phi_{\mathrm{B}}}} \\
& =\sqrt{\frac{2 \epsilon_{\mathrm{s}}\left(\phi_{\mathrm{B}}-V\right)}{q\left(N_{\mathrm{a}}+N_{\mathrm{d}}\right)} \frac{N_{\mathrm{a}}}{N_{\mathrm{d}}}} \\
x_{\mathrm{p}} & =x_{\mathrm{po}} \sqrt{1-\frac{V}{\phi_{\mathrm{B}}}} \\
x_{\mathrm{d}} & =x_{\mathrm{do}} \sqrt{1-\frac{V}{\phi_{\mathrm{B}}}} \\
E_{\max } & =E_{\mathrm{o}} \sqrt{1-\frac{V}{\phi_{\mathrm{B}}}}
\end{aligned}
$$

The concept of depletion capacitance

Now let us think about the junction region a bit further.

1. It stores charges
2. By changing the voltage (bias) across the junction, the amount of charges stored there changes \Longrightarrow Capacitor!
3. The charges that it stores:

$$
Q_{\mathrm{jo}}=\left|-q N_{\mathrm{a}} \cdot x_{\mathrm{po}}\right|=\left|q N_{\mathrm{d}} \cdot x_{\mathrm{no}}\right|=\sqrt{\frac{2 q \epsilon_{\mathrm{s}} N_{\mathrm{a}} N_{\mathrm{d}}}{N_{\mathrm{a}}+N_{\mathrm{d}}} \cdot \phi_{\mathrm{B}}}
$$

As voltage changes, Q_{j} becomes:

$$
Q_{\mathrm{j}}(V)=\sqrt{\frac{2 q \epsilon_{\mathrm{s}} N_{\mathrm{a}} N_{\mathrm{d}}}{N_{\mathrm{a}}+N_{\mathrm{d}}}\left(\phi_{\mathrm{B}}-V\right)}=Q_{\mathrm{jo}} \sqrt{1-\frac{V}{\phi_{\mathrm{B}}}} .
$$

Previously, we had $C=\frac{Q}{V}$, but that was for constant capacitance, a more rigorous definition should be:

$$
C=\frac{d Q}{d V}
$$

Therefore,

$$
\begin{aligned}
C_{\mathrm{j}} & =C_{\mathrm{j}}\left(V_{\mathrm{D}}\right)=\left|\frac{d Q_{\mathrm{j}}}{d V}\right|_{V_{\mathrm{D}}}=\left|Q_{\mathrm{jo}} \frac{d\left(\sqrt{1-\frac{V}{\phi_{\mathrm{B}}}}\right)}{d V}\right|_{V_{\mathrm{D}}} \\
& =\frac{+q N_{\mathrm{a}} x_{\mathrm{po}}}{2 \sqrt{1-\frac{V_{\mathrm{D}}}{\phi_{\mathrm{B}}}} \cdot \frac{1}{\phi_{\mathrm{B}}}} \\
& =\frac{q N_{\mathrm{a}} x_{\mathrm{po}}}{2 \phi_{\mathrm{B}}} \cdot \frac{1}{\sqrt{1-\frac{V_{\mathrm{D}}}{\phi_{\mathrm{B}}}}} \\
C_{\mathrm{j}}(V=0) & =C_{\mathrm{jo}}=\frac{q N_{\mathrm{a}} x_{\mathrm{po}}}{2 \phi_{\mathrm{B}}} \\
& =\frac{q N_{\mathrm{a}}}{2 \phi_{\mathrm{B}}} \sqrt{\frac{2 \epsilon_{\mathrm{s}} \phi_{\mathrm{B}}}{q\left(N_{\mathrm{a}}+N_{\mathrm{d}}\right)} \times \frac{N_{\mathrm{d}}}{N_{\mathrm{a}}}}=\sqrt{\frac{q \epsilon_{\mathrm{s}}}{2 \phi_{\mathrm{B}}} \frac{N_{\mathrm{a}} N_{\mathrm{d}}}{N_{\mathrm{a}}+N_{\mathrm{d}}}} \\
\because x_{\mathrm{do}} & =x_{\mathrm{no}}+x_{\mathrm{po}}=\sqrt{\frac{2 \epsilon_{\mathrm{s}} \phi_{\mathrm{B}}}{q} \frac{N_{\mathrm{a}}+N_{\mathrm{d}}}{N_{\mathrm{a}} N_{\mathrm{d}}}} \\
\Longrightarrow C_{\mathrm{jo}} & =\frac{\epsilon_{\mathrm{s}}}{x_{\mathrm{do}}}, C_{\mathrm{j}}\left(V_{\mathrm{D}}\right)=\frac{C_{\mathrm{jo}}}{\sqrt{1-\frac{V_{\mathrm{D}}}{\phi_{\mathrm{B}}}}} \\
C_{\mathrm{j}}\left(V_{\mathrm{D}}\right) & =\frac{\epsilon_{\mathrm{s}}}{x_{\mathrm{do}} \sqrt{1-\frac{V_{\mathrm{D}}}{\phi_{\mathrm{B}}}}=\frac{\epsilon_{\mathrm{s}}}{x_{\mathrm{d}}}}
\end{aligned}
$$

Can be considered as "parallel plate capacitor".

MIT OpenCourseWare
http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

