Recitation 9: MOSFET VI Characteristics

Before the class first do an exercise on MOS capacitor.

Under T.E., suppose we are under depletion, positive charges at M-O interface, negative charges $\left(\mathrm{Na}^{-}\right)$at O-S interface \& depletion region $x_{d o}$.

How does the C-V measurement curve look like?

$$
\text { Depletion: } \begin{gathered}
-1 H \mid- \\
\sigma_{x} C_{d}
\end{gathered}
$$

$$
\begin{aligned}
\frac{1}{C_{\mathrm{tot}}} & =\frac{1}{C_{\mathrm{ox}}}+\frac{1}{C_{\mathrm{d}}} \\
C_{\mathrm{ox}} & =\frac{\epsilon_{\mathrm{ox}}}{t_{\mathrm{ox}}}, \quad C_{\mathrm{d}}=\frac{\epsilon_{\mathrm{s}}}{x_{\mathrm{d}}\left(V_{\mathrm{GB}}\right)}
\end{aligned}
$$

Useful relations:

$$
\begin{aligned}
V_{\mathrm{FB}} & =-\left(\phi_{\text {gate }}-\phi_{\mathrm{body}}\right) \\
V_{\mathrm{T}}\left(n^{+} / p\right) & =V_{\mathrm{FB}}-2 \phi_{\mathrm{p}}+\frac{1}{C_{\mathrm{ox}}} \sqrt{2 \epsilon_{\mathrm{s}} q N_{\mathrm{a}}\left(-2 \phi_{\mathrm{p}}\right)} \\
\frac{C_{\mathrm{min}}}{C_{\mathrm{ox}}} & =\frac{1}{\sqrt{1+\frac{2 C_{\mathrm{ox}}^{2}\left(V_{\mathrm{T}}-V_{\mathrm{FB}}\right)}{q \epsilon_{\mathrm{s}} N_{\mathrm{a}}}}}
\end{aligned}
$$

Where is $C_{\text {min }}$? When V_{GB} changes, C_{ox} does not change. C_{d} changes due to $x_{\mathrm{d}}\left(V_{\mathrm{GB}}\right)$.

$$
\begin{aligned}
x_{\mathrm{d}} & =0 \text { at } V_{\mathrm{FB}}, \\
x_{\mathrm{d}} & =x_{\mathrm{d}, \max } \text { at } V_{\mathrm{T}} \Longrightarrow C_{\min }
\end{aligned}
$$

In tutorial, you can also find what the GV curves look like for $\mathrm{p}^{+}-\mathrm{n}$ MOS or $\mathrm{p}^{+}-\mathrm{p}$ MOS, or $\mathrm{n}^{+}-\mathrm{n}$ MOS.

MOSFET Device

- We only talked about 2 terminals in our MOS capacitor. Where are the other terminals? Source/Drain. In the MOS capacitor, S/D tie to bulk \rightarrow ground.

Figure 1: MOSFET: 4 terminal device

- As we mentioned, $V_{\mathrm{GB}} \Longrightarrow V_{\mathrm{G}}-V_{\mathrm{B}}$. In MOSFET, we usually have,

$$
\begin{aligned}
V_{\mathrm{DS}} & =V_{\mathrm{D}}-V_{\mathrm{S}} \\
V_{\mathrm{GS}} & =V_{\mathrm{G}}-V_{\mathrm{S}}
\end{aligned}
$$

You can do manipulation: $V_{\mathrm{GD}}=V_{\mathrm{G}}-V_{\mathrm{D}}=V_{\mathrm{GS}}-V_{\mathrm{DS}}$

- If the substrate of MOSFET is p-type, what type of MOSFET device this is? n-MOS or p-MOS?

It is n-MOS. MOSFET operates when it is in Inversion. So for n-MOS: Source/Drain are n^{+}. Thus we have two $\mathrm{p}-\mathrm{n}^{+}$junctions between source-substrate (bulk), n^{+}(D) and p (B). When we apply biases, we try to keep $V_{\mathrm{BS}} \leq 0, V_{\mathrm{BD}} \leq 0$ otherwise the $\mathrm{p}-\mathrm{n}^{+}$junction will conduct.

- When we use n-MOS, we always try to use source as reference: $V_{\mathrm{GS}}, V_{\mathrm{DS}}$ etc. To start with, we let $V_{\mathrm{BS}}=0 \Longrightarrow V_{\mathrm{GB}}=V_{\mathrm{GS}}$

From yesterday's discussion or 6.002 , what are the I-V characteristics (i.e. when applying V_{DS}, what does I_{DS} look like) of a n-MOS?

1. Remember we need to apply positive V_{GB} (i.e. V_{GS} here) in order to reach threshold. Before threshold, no conduction.

$$
\Longrightarrow V_{\mathrm{GS}}<V_{\mathrm{T}}, I_{\mathrm{DS}}=0 \quad \text { always (cutoff) }
$$

2. $V_{\mathrm{GS}} \geq V_{\mathrm{T}}$, now we have inversion layer. If the $V_{\mathrm{DS}}=0$, what is the inversion layer charge density?

$$
\left|Q_{\mathrm{n}}\right|=C_{\mathrm{ox}}\left(V_{\mathrm{GS}}-V_{\mathrm{T}}\right)
$$

When $V_{\mathrm{DS}}>0$, how will this charge density change? Now from S to D , along the channel interface, potential is no longer 0 .

$$
\begin{aligned}
V(y) & \neq 0(0<y<L) \quad \text { at each location } \mathrm{y} \\
\therefore\left|Q_{\mathrm{n}}(y)\right| & =C_{\mathrm{ox}}\left(V_{\mathrm{GS}}-V(\mathrm{y})-\mathrm{V}_{\mathrm{T}}\right)
\end{aligned}
$$

Decrease from source $(y=0) V(y)=0$ to minimum at $D\left(y=L, V(L)=V_{\mathrm{DS}}\right)$.

To calculate I_{DS} remember current \propto charge density, \propto carrier velocity.

$$
\begin{equation*}
I_{\mathrm{DS}}=W \cdot\left|Q_{\mathrm{n}}(y)\right| \cdot v_{y}(y)\left(v_{y}(y) \text { is velocity in the } y \text { direction at location } y\right) \tag{1}
\end{equation*}
$$

How to calculate $v_{y}(y) ? v=\mu \cdot E$. So need to know $E_{y}(y)$. How to know $E_{y}(y)$?

$$
E_{y}(y)=\frac{d V(y)}{d y} \text { (we have } V(x, y) \text { at each location: } \frac{d V}{d x} \text { will give } E_{x} \text {) }
$$

Therefore to plug everything in the equation (1)

$$
I_{\mathrm{DS}}=w \cdot C_{\mathrm{ox}}\left(V_{\mathrm{GS}}-V(y)-V_{\mathrm{T}}\right) \cdot \mu_{\mathrm{n}} \cdot \frac{d V(y)}{d y}
$$

Integrating,

$$
\begin{align*}
\int_{0}^{y} I_{\mathrm{DS}} d y & =\int_{0}^{v(y)} w \mu_{\mathrm{n}} C_{\mathrm{ox}}\left(V_{\mathrm{GS}}-V_{\mathrm{T}}-V\left(y^{\prime}\right)\right) d V^{\prime}\left(y^{\prime}\right) \tag{2}\\
\frac{I_{\mathrm{DS}} \cdot y}{w \mu_{\mathrm{n}} C_{\mathrm{ox}}} & =\left(V_{\mathrm{GS}}-V_{\mathrm{T}}\right) \cdot V(y)-\frac{1}{2} V^{2}(y) \tag{3}
\end{align*}
$$

So we can solve the potential along each location y.

$$
V(y)=\left(V_{\mathrm{GS}}-V_{\mathrm{T}}\right)-\sqrt{\left(V_{\mathrm{GS}}-V_{\mathrm{T}}\right)^{2}-\frac{2 I_{\mathrm{DS} \cdot y}}{w \mu_{\mathrm{n}} C_{\mathrm{ox}}}}
$$

Since I_{DS} should be the same everywhere, when $y=L, V(y)=V_{\mathrm{DS}}$, plug in (3)

$$
I_{\mathrm{DS}}=\frac{w}{L} \mu_{\mathrm{n}} C_{\mathrm{ox}}\left(V_{\mathrm{GS}}-V_{\mathrm{T}}-\frac{V_{\mathrm{DS}}}{2}\right) \cdot V_{\mathrm{DS}}
$$

When V_{DS} is small,

$$
I_{\mathrm{DS}} \simeq \underbrace{\frac{w}{L} \mu_{\mathrm{n}} C_{\mathrm{ox}}\left(V_{\mathrm{GS}}-V_{\mathrm{T}}\right)}_{\text {Gate voltage controlled resistor }} \cdot V_{\mathrm{DS}} \rightarrow \text { linear }
$$

Then as V_{DS} increases, I_{DS} bend over. When $V_{\mathrm{DS}}=V_{\mathrm{GS}}-V_{\mathrm{T}}: I_{\mathrm{DS}}$ saturates

$$
I_{\mathrm{DSAT}}=\frac{w}{L} \mu_{\mathrm{n}} C_{\mathrm{ox}} \cdot \underbrace{\frac{1}{2}\left(V_{\mathrm{GS}}-V_{\mathrm{T}}\right)^{2}}_{\left(\text {only depend on } V_{\mathrm{GS}}\right)}
$$

PMOSFET Case

Will need $V_{\mathrm{BS}} \geq 0, V_{\mathrm{BD}} \geq 0$ always. (typically $V_{\mathrm{BS}}=0$). Now in order to have inversion:

$$
V_{\mathrm{GB}}=V_{\mathrm{GS}}<0
$$

In p-MOS, we use

$$
\begin{aligned}
& V_{\mathrm{SG}}=V_{\mathrm{S}}-V_{\mathrm{G}}>0 \\
& V_{\mathrm{SD}}=V_{\mathrm{S}}-V_{\mathrm{D}}>0
\end{aligned}
$$

When working with p-MOS, simply transform

$$
\begin{aligned}
n & \longrightarrow p \\
V_{\mathrm{T}_{\mathrm{n}}} & \longrightarrow-V_{\mathrm{T}_{\mathrm{p}}} \\
I_{\mathrm{D}_{\mathrm{n}}} & \longrightarrow-I_{\mathrm{D}_{\mathrm{p}}} \\
V_{\mathrm{GS}} & \longrightarrow V_{\mathrm{SG}} \\
V_{\mathrm{DS}} & \longrightarrow V_{\mathrm{SD}} \\
\text { Triode/linear: }-I_{\mathrm{D}_{\mathrm{p}}} & =\frac{w}{L} \mu_{\mathrm{p}} C_{\mathrm{ox}}\left[V_{\mathrm{SG}}+V_{\mathrm{T}_{\mathrm{p}}}-\frac{V_{\mathrm{SD}}}{2}\right] V_{\mathrm{SD}} \quad V_{\mathrm{SD}} \leq V_{\mathrm{SG}}+V_{\mathrm{T}_{\mathrm{p}}} \\
\text { Saturation: }-I_{\mathrm{D}_{\mathrm{p}}} & =\frac{w}{2 L} \mu_{\mathrm{p}} C_{\mathrm{ox}}\left(V_{\mathrm{SG}}+V_{\mathrm{T}_{\mathrm{p}}}\right)^{2} \quad V_{\mathrm{SD}} \geq V_{\mathrm{SG}}+V_{\mathrm{T}_{\mathrm{p}}}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

