Recitation 13: Propagation Delay, NAND/NOR Gates

Outline

- Propagation Delay for CMOS Inverters
- Why NAND Gate is preferred over NOR Gate?
- Design Project

Propagation Delay for CMOS Inverters

Figure 1: Discharging cycle: t_{PHL} , Charging cycle: t_{PLH}

Propagation time =
$$\frac{1}{2}(t_{\text{PLH}} + t_{\text{PHL}})$$

 $t = \frac{\text{Charge(tobecharged/discharged)}}{(\text{Charging/Discharging)Current}};$ we treat C_{L} as a linear constant capacitor
 t_{PLH} = ? charging through PMOS
 t_{PLH} = $\frac{\frac{1}{2}C_{\text{L}}V_{\text{DD}}}{\frac{w_{\text{p}}}{2L_{\text{p}}\mu_{\text{p}}C_{\text{ox}}(V_{\text{DD}}+V_{\text{Tp}})^{2}}}$
why $\frac{1}{2}$? t_{p} is the time to discharge half of initial Q or charge half of final Q
 t_{PHL} = ? discharging through NMOS
 t_{PHL} = $\frac{\frac{1}{2}C_{\text{L}}V_{\text{DD}}}{\frac{w_{\text{p}}}{2L_{\text{p}}}\mu_{\text{n}}C_{\text{ox}}(V_{\text{DD}}-V_{\text{Tn}})^{2}} = \frac{C_{\text{L}}V_{\text{DD}}}{k_{\text{n}}(V_{\text{DD}}-V_{\text{Tn}})^{2}}$

As seen, $t_p \propto L$. This means, the longer the devices, the slower they become. This gets us to why NAND gates are preferred.

NAND vs. NOR

Gets us to why NAND gates are preferred:

Effective length of two n-channel devices in series

$$L_{\rm eff} = 2L_{\rm n}$$

For symmetrical transfer characteristics,

$$t_{\rm PLH} = t_{\rm PHL}$$
$$\mu_{\rm n} = 2\mu_{\rm p}$$
$$L_{\rm eff_n} = 2L_{\rm p}$$
$$\therefore w_{\rm n} = w_{\rm p}$$

But since $\mu_n = 2\mu_p$, we are better off having the series connection in NAND (rather than

NOR where PMOS's are in series). If we wanted the same thing in NOR:

$$\mu_{n} = 2\mu_{p}$$

$$L_{eff_{p}} = 2L_{eff_{n}}$$

$$\therefore w_{p} = 4w_{n}$$

NOR Structure

So for NAND:

$$\left(\frac{w}{L}\right)_{n} = \left(\frac{w}{L}\right)_{p}$$
 Reason is?

For M-input NAND:

$$\left(\frac{w}{L}\right)_{\rm n} = \frac{M}{2} \left(\frac{w}{L}\right)_{\rm p}$$

M-input NAND has M-NMOS's in series $\implies L_{\text{eff}} = ML_{\text{n}}$. So, for $k_{n_{\text{eff}}} = k_{p_{\text{eff}}}$:

$$\frac{w_{n}}{ML_{n}} \times \mu_{n} = \frac{w_{p}}{L_{p}}\mu_{p}$$

$$\mu_{n} = 2\mu_{p}$$

$$\frac{w_{n}}{ML_{n}} \times 2 = \frac{w_{p}}{L_{p}}$$

$$\left(\frac{w_{n}}{L}\right)_{n} = \frac{M}{2}\left(\frac{w}{L}\right)_{p}$$

$C_{\rm L} = ?$

Assume the next stage is another inverter. $C_{\rm L}$ is all capacitances seen at node $V_{\rm out}.$

$$C_{\rm L} = C_{\rm gstage2} + C_{\rm dbp1} + C_{\rm dbn1}$$

$$C_{\rm gstage2} = C_{\rm gp2} + C_{\rm gn2}$$

$$C_{\rm gn2} = \frac{2}{3}C_{\rm ox}(wL)_{\rm n2} + C_{\rm ox}w_{\rm n2}$$

$$\approx C_{\rm ox}(wL)_{\rm n2}$$

$$C_{\rm db_{\rm M}} = C_{\rm jn1}(wL_{\rm diff})_{\rm n1} + C_{\rm jsw_{n1}}(w + 2L_{\rm diff})_{\rm n1}$$

$$\implies C_{\rm L} = C_{\rm ox}(wL)_{\rm n2} + C_{\rm ox}(wL)_{\rm p2} + C_{\rm jn1}(wL_{\rm diff})_{\rm n1} + C_{\rm jsw_{n1}}(w + 2L_{\rm diff})_{\rm n1}$$

Design Project

What is the use of the circuit? Light in \implies width modulated electrical signal out.

What does each stage do?

• N_1 : charging 1,2 capacitors with $I_{\text{light}} + I_{\text{bias}}$

• At $T_{\rm M}$: tipping point, $V_{\rm out}$ changes from High to Low

$$\implies \operatorname{say} V_{\mathrm{M},1} = 1 \mathrm{V}$$
$$V_{\mathrm{M},2} = 2 \mathrm{V}$$

• Final stage: driver stage

You need enough current to be able to charge $C_{\rm L}$ quickly enough to meet $t_{\rm r}$ and $t_{\rm f}$ of specs. Decide how many stages you need (remember $V_{\rm out}$ positive pulse we need), and think about ratio of sizing between stages (hint: between 3 – 6 is the answer)

Specifications

- $V_{\text{out}}: t_{\text{r}}, t_{\text{f}}3 \,\text{ns}$
- Minimum gate areas
- At least 20 ns distinction between pulse widths corresponding to different I_{light} levels of 0, 1, 2, 3, μA
- Report: what should you submit

 \mathbf{Q} & A about design problem

6.012 Microelectronic Devices and Circuits Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.