Recitation 15: p-n diode I-V characteristics (II)

Yesterday, we talked about the diode I-V relationship: $I=I_{\mathrm{o}}\left(\mathrm{e}^{\frac{\mathrm{V}}{\mathrm{V}_{\text {th }}}}-1\right)$. Today, we will look more closely how is this relationship and what is I_{o} ?

Brief Review of the "Law of the junction"

When bias voltage V is applied (V can be either positive or negative): law of the junction \longrightarrow the minority carrier concentration at the SCR edge

$$
\begin{aligned}
n_{\mathrm{p}}\left(-x_{\mathrm{p}}\right) & =n_{\mathrm{po}} \cdot \mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}}=\frac{\mathrm{n}_{\mathrm{i}}^{2}}{\mathrm{~N}_{\mathrm{a}}} \cdot \mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}} \\
p_{\mathrm{n}}\left(x_{\mathrm{n}}\right) & =p_{\mathrm{no}} \cdot \mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}}=\frac{\mathrm{n}_{\mathrm{i}}^{2}}{\mathrm{~N}_{\mathrm{d}}} \mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}}
\end{aligned}
$$

At the contact, recombination/generation occur very fast

$$
\begin{aligned}
n_{\mathrm{p}}\left(-w_{\mathrm{p}}\right) & =n_{\mathrm{po}} \\
p_{\mathrm{n}}\left(+w_{\mathrm{n}}\right) & =p_{\mathrm{no}}
\end{aligned}
$$

We know two data points of the concentration, what is in between the QNRs?
From yesterday's discussion: Linear profile vs. position. This is because, approximating there is no recombination/generation inside QNR (and SCR).
\Longrightarrow current need to be constant.
For minority carriers, only diffusion current $\Longrightarrow \frac{d p}{d x}$ or $\frac{d n}{d x}$ constant.
Note these are log scale, we try to plot linear dependence on log scale; it should not be linear on log scale

How to Calculate Current

$$
\begin{aligned}
J_{\mathrm{p}}\left(x_{\mathrm{n}}\right) & =-\left.q D_{\mathrm{p}} \frac{d p_{\mathrm{n}}}{d x}\right|_{x=x_{\mathrm{n}}} \\
& =-q D_{\mathrm{p}} \frac{p_{\mathrm{n}}\left(x_{\mathrm{n}}\right)-\overbrace{p_{\mathrm{n}}\left(w_{\mathrm{n}}\right)}^{x_{\mathrm{no}}}}{x_{\mathrm{n}}-w_{\mathrm{n}}}=q D_{\mathrm{p}} \frac{p_{\mathrm{no}} \mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}}-\mathrm{p}_{\mathrm{no}}}{w_{\mathrm{n}}-x_{\mathrm{n}}} \\
J_{\mathrm{p}}\left(x_{\mathrm{n}}\right) & =q D_{\mathrm{p}} \frac{p_{\mathrm{no}}}{w_{\mathrm{n}}-x_{\mathrm{n}}}\left(\mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}}-1\right)=\mathrm{q} \frac{\mathrm{n}_{\mathrm{i}}^{2}}{\mathrm{~N}_{\mathrm{d}}} \cdot \frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{w}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}}}\left(\mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}}-1\right) \\
J_{\mathrm{n}}\left(-x_{\mathrm{p}}\right) & =\left.q D_{\mathrm{n}} \frac{d n_{\mathrm{p}}}{d x}\right|_{x=-x_{\mathrm{p}}}=q D_{\mathrm{n}} \frac{n_{\mathrm{p}}\left(-x_{\mathrm{p}}\right)-\overbrace{n_{\mathrm{p}}\left(-w_{\mathrm{p}}\right)}^{-n_{\mathrm{po}}}}{-x_{\mathrm{p}}+w_{\mathrm{p}}}=q D_{\mathrm{n}} \frac{n_{\mathrm{po}}\left(\mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}}-1\right)}{w_{\mathrm{p}}-x_{\mathrm{p}}} \\
J_{\mathrm{n}}\left(-x_{\mathrm{p}}\right) & =q \frac{n_{\mathrm{i}}^{2}}{N_{\mathrm{a}}} \cdot \frac{D_{\mathrm{n}}}{w_{\mathrm{p}}-x_{\mathrm{p}}}\left(\mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}}-1\right)
\end{aligned}
$$

The diode current is carried out by both electrons and holes. They need to be summed up

$$
\begin{aligned}
I_{\text {total }} & =\left(J_{\mathrm{n}}+J_{\mathrm{p}}\right) \cdot A, \mathrm{~A} \text { is cross-sectional area of diode } \\
I_{\text {total }} & =q A \cdot n_{\mathrm{i}}^{2}\left(\frac{1}{N_{\mathrm{a}}} \cdot \frac{D_{\mathrm{n}}}{w_{\mathrm{p}}-x_{\mathrm{p}}}+\frac{1}{N_{\mathrm{d}}} \cdot \frac{D_{\mathrm{p}}}{w_{\mathrm{n}}-x_{\mathrm{n}}}\right) \cdot\left(\mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}}-1\right) \\
I_{\mathrm{o}} & =q A n_{\mathrm{i}}^{2}\left(\frac{1}{N_{\mathrm{a}}} \cdot \frac{D_{\mathrm{n}}}{w_{\mathrm{p}}-x_{\mathrm{p}}}+\frac{1}{N_{\mathrm{d}}} \cdot \frac{D_{\mathrm{p}}}{w_{\mathrm{n}}-x_{\mathrm{n}}}\right)
\end{aligned}
$$

Note:

1. I_{o} is a pretty small value, $10^{-15} \mathrm{~A}$. With a positive voltage, say $0.6 \mathrm{~V}, \mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}}=$ $10^{\mathrm{V} / 60 \mathrm{mV}}=10^{10}$, we will get a fairly large current
2. Just by looking at the equation of I_{o}, can we tell which part is J_{n} ? Which part is J_{p} ?
J_{n} is electron diffusion in p-QNR $\Longrightarrow \frac{1}{N_{\mathrm{a}}} \frac{D_{\mathrm{n}}}{w_{\mathrm{p}}-x_{\mathrm{p}}}$
J_{p} is hole diffusion in n-QNR $\Longrightarrow \frac{1}{N_{\mathrm{d}}} \frac{D_{\mathrm{p}}}{w_{\mathrm{n}}-x_{\mathrm{n}}}$
Be careful where to use $D_{\mathrm{n}}, D_{\mathrm{p}}$!
3. For an asymmetrically doped diode, $n^{+} p$ or $p^{+} n$, the J_{n} and J_{p} can differ a lot.

Overall Picture of Diode Current

Through the diode, the electron current needs to be constant throughout, and the hole current needs to be constant throughout. This means:
$\underbrace{\text { the majority hole current on } \mathrm{p}-\mathrm{QNR} \text { side }}_{\text {drift }+ \text { diffusion }}=\underbrace{\text { minority hole current on } \mathrm{n}-\mathrm{QNR} \text { side }}_{\text {only diffusion }}$

For students who are interested in the majority carriers, can discuss a little bit about it.

Exercise

$N_{\mathrm{a}}=5 \times 10^{6} \mathrm{~cm}^{-3}, \mathrm{~N}_{\mathrm{d}}=10^{17} \mathrm{~cm}^{-3}, \mathrm{w}_{\mathrm{p}}=0.3 \mu \mathrm{~m}, \mathrm{w}_{\mathrm{n}}=0.3 \mu \mathrm{~m}$. If $V=0.75 \phi_{\mathrm{B}}$, find $J_{\mathrm{n}}, J_{\mathrm{p}}$. First D_{n} and D_{p} :

- D_{n} is electron diffusion coefficient in p-region: doping

$$
5 \times 10^{6} \mathrm{~cm}^{-3}, \mu_{\mathrm{n}}, \mu_{\mathrm{n}}=900 \mathrm{~cm}^{2} / \mathrm{Vs}, \frac{\mathrm{D}}{\mu}=\frac{\mathrm{kT}}{\mathrm{q}} \Longrightarrow \mathrm{D}_{\mathrm{n}} \simeq 22.5 \mathrm{~cm}^{2} / \mathrm{s}
$$

- D_{p} is hole diffusion coefficient in n-region:

$$
N_{\mathrm{d}}=10^{17}, \mu_{\mathrm{n}}=350 \mathrm{~cm}^{2} / \mathrm{Vs}, \mathrm{D}_{\mathrm{p}}=8.75 \mathrm{~cm}^{2} / \mathrm{s}
$$

$$
\begin{aligned}
\phi_{\mathrm{B}} & =\frac{k T}{q} \ln \frac{N_{\mathrm{a}} N_{\mathrm{d}}}{n_{\mathrm{i}}^{2}}=0.025 \ln \left(\frac{5 \times 10^{6} \times 10^{17}}{10^{20}}\right)=0.789 \mathrm{~V} \\
V & =0.75 \phi_{\mathrm{B}}=0.591 \mathrm{~V} \\
x_{\mathrm{po}} & =\sqrt{\frac{2 \epsilon_{\mathrm{s}} \phi_{\mathrm{B}} N_{\mathrm{d}}}{q N_{\mathrm{a}}\left(N_{\mathrm{a}}+N_{\mathrm{d}}\right)}}=\sqrt{\frac{2 \times 1 \times 10^{-12} \mathrm{~F} / \mathrm{cm} \times 0.79 \mathrm{~V} \times 10^{17} \mathrm{~cm}^{-3}}{1.6 \times 10^{-19} \mathrm{C} \times 5 \times 10^{16} \times\left(5 \times 10^{16}+10^{17}\right) \mathrm{cm}^{-6}}}=0.118 \mu \mathrm{~m} \\
N_{\mathrm{a}} \cdot x_{\mathrm{po}} & =N_{\mathrm{d}} \cdot x_{\mathrm{no}} \Longrightarrow \Longrightarrow x_{\mathrm{no}}=\frac{1}{2} x_{\mathrm{po}}=0.059 \mu \mathrm{~m} \\
x_{\mathrm{n}} & =x_{\mathrm{no}} \sqrt{1-V / \phi_{\mathrm{B}}}=0.059 \mu \mathrm{~m} \times \frac{1}{2}=0.0295 \mu \mathrm{~m} \\
x_{\mathrm{p}} & =x_{\mathrm{po}} \sqrt{1-V / \phi_{\mathrm{B}}}=0.059 \mu \mathrm{~m} \\
J_{\mathrm{n}} & =q n_{\mathrm{i}}^{2}\left(\frac{D_{\mathrm{n}}}{N_{\mathrm{a}}\left(w_{\mathrm{p}}-x_{\mathrm{p}}\right)}\right)\left(\mathrm{e}^{\left.\mathrm{V} / \mathrm{V}_{\mathrm{th}}-\mathrm{V}\right)} \quad \text { forward bias } V \gg V_{\mathrm{th}}\right. \\
& =\left(\frac{1.6 \times 10^{-19} \times 10^{20} \times 22.5 \cdot \mathrm{C} \times \mathrm{cm}^{-6} \times \mathrm{cm}^{2} / \mathrm{s}}{5 \times 10^{16} \mathrm{~cm}^{3}(0.3-0.059) \times 10^{-4} \mathrm{~cm}}\right) \cdot \underbrace{\mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}}}_{10^{9.85}} \\
& =2.98 \times 10^{-10} \mathrm{~A} / \mathrm{cm}^{2} \cdot 10^{9.85}=2.98 \times 10^{-10} \times 7.07 \times 10^{9} \mathrm{~A} / \mathrm{cm}^{2}=2.10 \mathrm{~A} / \mathrm{cm}^{2} \\
J_{\mathrm{p}} & =q n_{\mathrm{i}}^{2} \frac{D_{\mathrm{p}}}{N_{\mathrm{d}}\left(w_{\mathrm{n}}-x_{\mathrm{n}}\right)}\left(\mathrm{e}^{\left.\mathrm{V} / \mathrm{V}_{\mathrm{th}}-1\right)}\right. \\
& =\frac{1.6 \times 10^{-19} \times 10^{20} \times 8.75}{10^{17} \times(0.3-0.029) \times 10^{-4} \mathrm{~cm}} \cdot \mathrm{e}^{\mathrm{V} / \mathrm{V}_{\mathrm{th}}}=5.17 \times 10^{-11} \mathrm{~A} / \mathrm{cm}^{2} \times 10^{9.85}=0.36 \mathrm{~A} / \mathrm{cm}^{2}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

