Recitation 16: Small Signal Model of pin Diode

Review

Last week we learned about the IV characteristic of p-n diode:

$$
\begin{aligned}
I & =I_{\mathrm{o}}\left(\mathrm{e}^{\mathrm{q} V_{\mathrm{o}} / \mathrm{kT}}-1\right) \\
\text { where } I_{\mathrm{o}} & =q A n_{\mathrm{i}}^{2}\left(\frac{1}{N_{\mathrm{a}}} \frac{D_{\mathrm{n}}}{w_{\mathrm{p}}-x_{\mathrm{p}}}+\frac{1}{N_{\mathrm{d}}} \frac{D_{\mathrm{p}}}{w_{\mathrm{n}}-x_{\mathrm{n}}}\right)
\end{aligned}
$$

If we plot,

Yesterday, we discussed the small signal model for p-n diode. Under forward bias, the small signal (ss) model of a p-n diode is:

C_{j} is the junction capacitance as we talked about before, C_{d} is called "diffusion capacitance", this is new

Small signal circuit model of p-n diode: (two terminal device)

In a small signal model, we have linearized conductance (resistance) and capacitances.

Linearized Conductance (Resistance)

$$
\begin{aligned}
\gamma_{\mathrm{d}} & =\frac{1}{g_{\mathrm{d}}}, \quad g_{\mathrm{d}}=\left.\frac{\delta i_{\mathrm{D}}}{\delta V_{\mathrm{D}}}\right|_{V_{\mathrm{D}}}=\left.\frac{\delta I_{\mathrm{o}} \cdot\left(\mathrm{e}^{\mathrm{q} V_{\mathrm{D}} / \mathrm{kT}}-1\right)}{\delta V_{\mathrm{D}}}\right|_{V_{\mathrm{D}}} \\
& =I_{\mathrm{o}} \cdot \frac{q}{k T} \mathrm{e}^{\mathrm{q} V_{\mathrm{D}} / \mathrm{kT}} \\
& =\frac{q}{k T} \cdot\left(I_{\mathrm{D}}+I_{\mathrm{o}}\right) \\
& =\frac{q}{k T} I_{\mathrm{D}}, \quad \frac{k T}{q}=V_{\mathrm{th}} \\
\Longrightarrow \gamma_{\mathrm{d}} & =\frac{V_{\mathrm{th}}}{I_{\mathrm{D}}}
\end{aligned}
$$

$V_{\text {th }}$ constant, the larger operating current I_{D}, the smaller is γ_{d}

Depletion Capacitance (due to p-n junction)

$$
\begin{aligned}
C_{\mathrm{jo}} & =\frac{\epsilon_{\mathrm{s}}}{x_{\mathrm{do}}}=\sqrt{\frac{q \epsilon_{\mathrm{s}} N_{\mathrm{a}} N_{\mathrm{d}}}{2\left(N_{\mathrm{a}}+N_{\mathrm{d}}\right) \phi_{\mathrm{B}}}} \\
C_{\mathrm{j}}\left(V_{\mathrm{D}}\right) & =\frac{C_{\text {capacitance/unit area! }}^{\sqrt{1-\frac{V_{\mathrm{D}}}{\phi_{\mathrm{B}}}}}}{} \text { For forward bias limit } V_{\mathrm{D}} \text { to } \frac{\phi_{\mathrm{B}}}{2}
\end{aligned}
$$

Diffusion Capacitance

For this, we need to look at the majority carrier concentration as well. To keep quasi-neutral,

$$
\begin{aligned}
n_{\mathrm{n}}(x) & =N_{\mathrm{d}}+p_{\mathrm{n}}(x) \\
p_{\mathrm{p}}(x) & =N_{\mathrm{a}}+n_{\mathrm{p}}(x)
\end{aligned}
$$

It is a capacitor without two parallel plates! And the " + " and "-" charges are just mixed with each other! Isn't that amazing!
charge stored on the n-side:

$$
\left.\begin{array}{rl}
q_{\mathrm{p}_{\mathrm{n}}} & =-q_{\mathrm{N}_{\mathrm{n}}}=q A \frac{1}{2}\left(w_{\mathrm{n}}-x_{\mathrm{n}}\right) \cdot \frac{n_{\mathrm{i}}^{2}}{N_{\mathrm{d}}}\left(\mathrm{e}^{\mathrm{qV}} \mathrm{~V}_{\mathrm{D}} / \mathrm{kT}\right.
\end{array} 1\right)
$$

1. $C_{\mathrm{dn}}=\frac{q A}{2 V_{\mathrm{th}}}\left(w_{\mathrm{n}}-x_{\mathrm{n}}\right) \cdot p_{\mathrm{no}} \mathrm{e}^{\mathrm{qV} V_{\mathrm{D}} / \mathrm{kT}}=\frac{\mathrm{qA}}{2 \mathrm{~V}_{\mathrm{th}}}\left(\mathrm{w}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}}\right) \cdot \mathrm{p}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}\right)$
2. Write in terms of I_{D}

$$
\begin{aligned}
C_{\mathrm{dn}}= & q A \frac{n_{\mathrm{i}}^{2}}{N_{\mathrm{d}}} \cdot \frac{D_{\mathrm{p}}}{w_{\mathrm{n}}-x_{\mathrm{n}}} \cdot \mathrm{e}^{\mathrm{q} \mathrm{~V}_{\mathrm{D}} / \mathrm{kT}} \cdot \frac{\mathrm{w}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}}}{2} \cdot \frac{\mathrm{w}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}}}{\mathrm{D}_{\mathrm{p}}} \cdot \frac{\mathrm{q}}{\mathrm{kT}} \\
C_{\mathrm{dn}}= & \frac{q}{k T} \cdot \frac{\left(w_{\mathrm{n}}-x_{\mathrm{n}}\right)^{2}}{2 D_{\mathrm{p}}} \cdot I_{\mathrm{D}_{\mathrm{p}}} \\
\text { Define }: & \text { transit time of holes through n-QNR: } \\
T_{\mathrm{T}_{\mathrm{p}}}= & \frac{\left(w_{\mathrm{n}}-x_{\mathrm{n}}\right)^{2}}{2 D_{\mathrm{p}}}=\frac{w_{\mathrm{n}}-x_{\mathrm{n}}}{2 D_{\mathrm{p}} /\left(w_{\mathrm{n}}-x_{\mathrm{n}}\right)}=\frac{\text { length }}{\text { velocity }} \\
C_{\mathrm{dn}} & \simeq \frac{q}{k T} \cdot T_{\mathrm{T}_{\mathrm{p}}} \cdot I_{\mathrm{D}_{\mathrm{p}}} \\
C_{\mathrm{dn}} & =\frac{I_{\mathrm{D}_{\mathrm{p}}} \cdot T_{\mathrm{T}_{\mathrm{p}}}}{V_{\mathrm{th}}} \\
\text { Similarly, } C_{\mathrm{dp}} & \simeq \frac{q}{k T} \cdot T_{\mathrm{T}_{\mathrm{n}}} \cdot I_{\mathrm{D}_{\mathrm{n}}}
\end{aligned}
$$

Charges on both side are added together. The two capacitors are in parallel.

$$
\begin{aligned}
& C_{\mathrm{d}}=C_{\mathrm{dn}}+C_{\mathrm{dp}}=\frac{q}{k T}\left(T_{\mathrm{T}_{\mathrm{n}}} \cdot I_{\mathrm{D}_{\mathrm{n}}}+T_{\mathrm{T}_{\mathrm{p}}} \cdot I_{\mathrm{D}_{\mathrm{p}}}\right) \\
& C_{\mathrm{d}}=C_{\mathrm{dn}}+C_{\mathrm{dp}}=\frac{q A}{2 V_{\mathrm{th}}}\left(\left(w_{\mathrm{p}}-x_{\mathrm{p}}\right) n_{\mathrm{po}}+\left(w_{\mathrm{n}}-x_{\mathrm{n}}\right) p_{\mathrm{no}}\right) \mathrm{e}^{\mathrm{qV} V_{\mathrm{D}} / \mathrm{kT}}
\end{aligned}
$$

Discussions:

1. Where do the extra majority carriers come from?
2. Majority current: -diffusion + drift
3. $C_{\mathrm{d}} \propto \mathrm{e}^{\mathrm{qV}} \mathrm{V}_{\mathrm{D}} / \mathrm{kT}$: for reverse bias, depletion capacitance dominate. For forward bias, diffusion capacitance dominate

Exercise: p-n Diode

$$
\begin{array}{rlll}
w_{\mathrm{p}} & =0.5 \mu \mathrm{~m} & \mathrm{~N}_{\mathrm{a}}=2.5 \times 10^{17} \mathrm{~cm}^{-3} & \mathrm{D}_{\mathrm{n}}=14 \mathrm{~cm}^{2} / \mathrm{s} \\
w_{\mathrm{n}} & =1.0 \mu \mathrm{~m} & \mathrm{~N}_{\mathrm{d}}=4.0 \times 10^{16} \mathrm{~cm}^{-3} & \mathrm{D}_{\mathrm{p}}=10 \mathrm{~cm}^{2} / \mathrm{s} \\
V_{\mathrm{d}} & =720 \mathrm{mV} & \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A} &
\end{array}
$$

Find $V_{\mathrm{d}}, C_{\mathrm{j}}$, and C_{d}. For this calculation, ignore $x_{\mathrm{n}}, x_{\mathrm{p}}$.

$$
\begin{aligned}
J_{\mathrm{o}} & =q n_{\mathrm{i}}^{2}\left(\frac{D_{\mathrm{n}}}{N_{\mathrm{a}} w_{\mathrm{p}}}+\frac{D_{\mathrm{p}}}{N_{\mathrm{d}} w_{\mathrm{n}}}\right)=5.79 \times 10^{-11} \mathrm{~A} / \mathrm{cm}^{2} \\
I_{\mathrm{D}} & =I_{\mathrm{o}}\left(\mathrm{e}^{\mathrm{q} \mathrm{~V}_{\mathrm{o}} / \mathrm{kT}}-1\right) \simeq \mathrm{I}_{\mathrm{o}} \cdot \mathrm{e}^{\mathrm{qV} / \mathrm{kT}}=\mathrm{I}_{\mathrm{o}} \cdot 10^{720 / 60}=50 \mu \mathrm{~A} \\
\Longrightarrow I_{\mathrm{o}} & =5 \times 10^{-17} \mathrm{~A} \Longrightarrow \mathrm{~J}_{\mathrm{o}}=\mathrm{I}_{\mathrm{o}} / \mathrm{A} \Longrightarrow \mathrm{~A}=8.64 \times 10^{-7} \mathrm{~cm}^{2} \\
\gamma_{\mathrm{d}} & =\frac{V_{\mathrm{th}}}{I_{\mathrm{D}}}=\frac{0.025 \mathrm{~V}}{50 \mu \mathrm{~A}}=500 \omega \quad \phi_{\mathrm{B}}=\frac{\mathrm{kT}}{\mathrm{q}} \ln \frac{\mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}}{\mathrm{n}_{\mathrm{i}}^{2}}=840 \mathrm{mV} \\
C_{\mathrm{jo}} & =A \cdot \sqrt{\frac{q \epsilon_{\mathrm{s}} N_{\mathrm{d}} N_{\mathrm{a}}}{2\left(N_{\mathrm{a}}+N_{\mathrm{d}}\right) \phi_{\mathrm{B}}}} \\
& =A \sqrt{\frac{1.6 \times 10^{-19} \mathrm{C} \times 8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm} \cdot 11.9 \times 4 \times 10^{16} \times 2.5 \times 10^{17} \mathrm{~cm}^{-6}}{2\left(4 \times 10^{16}+2.5 \times 10^{17}\right) 0.84 \mathrm{~V} \cdot \mathrm{~cm}^{-3}}} \\
= & 8.64 \times 10^{-7} \mathrm{~cm}^{2} \times 5.88 \times 10^{-8} \mathrm{~F} / \mathrm{cm}^{2} \\
& =50.8 \mathrm{fF}=50.8 \times 10^{-15} \mathrm{~F} \\
C_{\mathrm{j}} & =\frac{C_{\mathrm{jo}}}{\sqrt{1-\frac{V_{\mathrm{D}}}{\phi_{\mathrm{B}}}}=\frac{50.8 \mathrm{fF}}{\frac{1}{\sqrt{2}}}=71.8 \mathrm{fF}} \\
C_{\mathrm{d}} & =\frac{q A}{2 V_{\mathrm{th}}} \cdot\left(w_{\mathrm{p}} \cdot n_{\mathrm{p}}\left(-x_{\mathrm{p}}\right)+w_{\mathrm{n}} \cdot p_{\mathrm{n}}\left(x_{\mathrm{n}}\right)\right) \\
= & \frac{1.6 \times 10^{-19} \mathrm{C} \times 8.64 \times 10^{-7} \mathrm{~cm}^{2}}{2 \times 0.025}\left(0.5 \times 10^{-4} \times \frac{10^{20}}{2.5 \times 10^{17}}+1 \times 10^{-4} \times \frac{10^{20}}{4 \times 10^{16}}\right) \underbrace{e^{\mathrm{qV} / \mathrm{kT}}}_{10^{12}} \\
= & \frac{1.6 \times 10^{-19} \mathrm{C} \times 8.64 \times 10^{-7} \mathrm{~cm}^{2}}{2 \times 0.025 \mathrm{~V}}(\underbrace{0.5 \times 10^{-4}}_{\mathrm{cm}} \times \underbrace{4 \times 10^{14}}_{\mathrm{cm}{ }^{-3}}+\underbrace{1 \times 10^{-4}}_{\mathrm{cm}} \times \underbrace{2.5 \times 10^{15}}_{\mathrm{cm}^{-3}}) \\
& =\frac{1.6 \times 10^{-19} \mathrm{C} \times 8.64 \times 10^{-7}}{2 \times 0.025 \mathrm{~V}} \times 2.7 \times 10^{11}=746 \mathrm{fF}^{2}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

