Recitation 20: Amplifiers Review

Yesterday, we introduced two more amplifier circuits: C-drain, C-base.
As we know, there is an analogy between MOS \& BJT:

MOS	BUT	Function
Common Source \longleftrightarrow	Common-Emitter	Voltage or G_{m} Amp.
Common Drain \longleftrightarrow	Common-Collector	Voltage Buffer
Common Gate \longleftrightarrow	Common-Base	Current Buffer

Note: Buffer is an amplifier with gain 1, but input or output impedance changed We have also learned that there are 4 types of amplifiers, their two port models are

For the above single stage amplifiers (i.e. CS, CD, CG, CE, CC, CB), as we identify their particular function, e.g. current buffer is a type of current amplifier. We can use a two-port model for current amplifier to model a CB or CG circuit. Their corresponding $R_{\mathrm{in}}, R_{\text {out }}, A_{\mathrm{io}}$ will depend on the circuit (or device parameter), which we can derive based on the small signal circuit model of the circuit.
Yesterday, we looked at the example of CD \& CG. Today we will look at CC \& CB.

Common-Base Amplifier

S. S. circuit:

Cast this into two port model

Need to find what is the corresponding $A_{\mathrm{io}}, R_{\mathrm{in}}, R_{\text {out }}$
$A_{\text {io }}$
Intrinsic current gain: ignore R_{s}, just consider $i_{\mathrm{in}}=i_{\mathrm{s}} ; R_{\mathrm{L}}$ short.
replace the

short R_{L} at the output

$$
\begin{aligned}
i_{\mathrm{in}} & =-\left(\frac{v_{\pi}}{\gamma_{\pi}}+g_{\mathrm{m}} v_{\pi}+\frac{v_{\pi}}{\gamma_{\mathrm{o}}}\right), \quad i_{\text {out }}=g_{\mathrm{m}} v_{\pi}+\frac{v_{\pi}}{\gamma_{\mathrm{o}}} \\
\Longrightarrow v_{\pi} & =-\frac{i_{\text {in }}}{\frac{1}{v_{\pi}}+g_{\mathrm{m}}+\frac{1}{\gamma_{\mathrm{o}}}}=\frac{i_{\text {in }}}{g_{\pi}+g_{\mathrm{m}}+g_{\mathrm{o}}} \\
\Longrightarrow A_{\mathrm{io}} & =\frac{i_{\text {out }}}{i_{\text {in }}}=-\frac{\left(g_{\mathrm{m}}+g_{\mathrm{o}}\right) \cdot \frac{i_{\mathrm{in}}}{g_{\pi}+g_{\mathrm{m}}}+g_{\mathrm{o}}}{i_{\text {in }}}=-\frac{g_{\mathrm{m}}+g_{\mathrm{o}}}{g_{\pi}+g_{\mathrm{m}}+g_{\mathrm{o}}} \simeq-1 \\
\because \frac{1}{g_{\mathrm{m}}} & \simeq 1 \mathrm{k} \Omega, \gamma_{\mathrm{o}} \approx 100 \mathrm{k} \Omega \\
g_{\mathrm{m}}>g_{\mathrm{o}}, \gamma_{\pi} & =\frac{\beta_{\mathrm{F}}}{g_{\mathrm{m}}} \Longrightarrow g_{\pi}=\frac{g_{\mathrm{m}}}{\beta_{\mathrm{F}}} g_{\pi} \ll g_{\mathrm{m}}
\end{aligned}
$$

$R_{\text {in }}$

have R_{L} across output

$$
\begin{aligned}
\gamma_{\pi}, \gamma_{\mathrm{o}} & \gg \frac{1}{g_{\mathrm{m}}} \text { as we just discussed } \\
\therefore & \text { transconductance generator } g_{\mathrm{m}} \text { dominates currents at the input node } \\
i_{\mathrm{t}} & =-\left(\frac{v_{\pi}}{\gamma_{\pi}}+g_{\mathrm{m}} v_{\pi}+\frac{v_{\mathrm{o}}}{\gamma_{\mathrm{o}}}\right) \simeq-g_{\mathrm{m}} v_{\pi}=g_{\mathrm{m}} v_{\mathrm{t}} \\
\therefore R_{\mathrm{in}} & =\frac{v_{\mathrm{t}}}{i_{\mathrm{t}}}=\frac{v_{\mathrm{t}}}{g_{\mathrm{m}} v_{\mathrm{t}}} \simeq \frac{1}{g_{\mathrm{m}}} \text { LOW! (good for getting current in) }
\end{aligned}
$$

Exact: see pp $150 R_{\text {in }}=\frac{1}{\frac{1}{\gamma_{\pi}}+g_{\mathrm{m}}+\frac{1-g_{\mathrm{m}}\left(\gamma_{\mathrm{co}}| | R_{\mathrm{L}}\right)}{\gamma_{\mathrm{o}}+\left(V_{\mathrm{oc}}| | R_{\mathrm{L}}\right)}}$
$R_{\text {out }}$
Similarly

1. shut down all independent sources
2. load input with R_{s}
3. put test current source at output
4. $R_{\text {out }}=\frac{v_{\mathrm{t}}}{i_{\mathrm{t}}}$

$$
\begin{align*}
i_{\mathrm{t}} & =g_{\mathrm{m}} v_{\pi}+\frac{v_{\mathrm{t}}+v_{\pi}}{\gamma_{\mathrm{o}}} \quad \text { voltage across } \gamma_{\mathrm{o}} \text { is } v_{\mathrm{t}}+v_{\pi} \tag{1}\\
v_{\pi} & =-i_{\mathrm{t}} \cdot\left(\gamma_{\pi} \| R_{\mathrm{s}}\right) \tag{2}
\end{align*}
$$

\Longrightarrow plug (2) into (1)
$\Longrightarrow \frac{v_{\mathrm{t}}}{i_{\mathrm{t}}}=\gamma_{\mathrm{o}}+\left(\gamma_{\pi} \| R_{\mathrm{s}}\right)+g_{\mathrm{m}} \gamma_{\mathrm{o}}\left(\gamma_{\pi} \| R_{\mathrm{s}}\right)$
$\therefore R_{\text {out }}=\gamma_{\mathrm{oc}}\left\|\left[\gamma_{\mathrm{o}}+\left(\gamma_{\pi} \| R_{\mathrm{s}}\right)+g_{\mathrm{m}} \gamma_{\mathrm{o}}\left(\gamma_{\pi} \| R_{\mathrm{s}}\right)\right] \simeq \gamma_{\mathrm{oc}}\right\| \gamma_{\mathrm{o}}\left[1+g_{\mathrm{m}}\left(\gamma_{\pi} \| R_{\mathrm{s}} \chi \bar{b}\right)\right.$
If $R_{\mathrm{s}} \gg \gamma_{\pi}, \quad R_{\text {out }} \simeq \gamma_{\text {oc }} \| \gamma_{\mathrm{o}}[1+\underbrace{g_{\mathrm{m}} \gamma_{\pi}}_{\beta_{\mathrm{p}}}]=\underbrace{\gamma_{\text {oc }} \| \gamma_{\mathrm{o}} \cdot \beta_{\mathrm{F}}}_{\text {large }}$
Excellent current buffer: can use current source with source resistance only slightly higher than $R_{\mathrm{in}}\left(\frac{1}{g_{\mathrm{m}}}\right)$, and get same current with high $R_{\text {out }}$

Common-Collector Amplifier

Rearrange,

Cast this into two port voltage amplifier model
$A_{\mathrm{vo}}\left(R_{\mathrm{L}}=\infty, R_{\mathrm{s}}=0\right)$

$$
\begin{aligned}
V_{\mathrm{out}} & =A_{\mathrm{vo}} V_{\mathrm{in}}=\left(g_{\mathrm{m}} v_{\pi}+g_{\mathrm{m}} \frac{v_{\pi}}{\beta_{\mathrm{F}}}\right) \cdot\left(\gamma_{\mathrm{o}} \| \gamma_{\mathrm{oc}}\right) \\
& =g_{\mathrm{m}}\left(1+\frac{1}{\beta_{\mathrm{F}}}\right) v_{\pi}\left(\gamma_{\mathrm{o}} \| \gamma_{\mathrm{oc}}\right) \\
i_{\mathrm{in}} & =\frac{v_{\pi}}{\gamma_{\pi}}=v_{\pi} \frac{g_{\mathrm{m}}}{\beta_{\mathrm{F}}} \\
\text { But } v_{\pi} & =v_{\text {in }}-v_{\mathrm{out}} \Longrightarrow v_{\mathrm{out}}=g_{\mathrm{m}}\left(1+\frac{1}{\beta_{\mathrm{F}}}\right)\left(v_{\mathrm{in}}-v_{\mathrm{out}}\right)\left(\gamma_{\mathrm{o}} \| \gamma_{\mathrm{oc}}\right) \\
A_{\mathrm{vo}} & =\frac{v_{\mathrm{out}}}{v_{\mathrm{in}}}=\frac{1}{1+\frac{1}{g_{\mathrm{m}}}\left(1+\frac{1}{\beta_{\mathrm{F}}}\right)\left(\gamma_{\mathrm{o}} \| \gamma_{\mathrm{oc}}\right)} \simeq 1
\end{aligned}
$$

$R_{\text {in }}$
Leave R_{L} in place, replace source with

$$
\begin{aligned}
v_{\mathrm{t}} & =i_{\mathrm{t}} \cdot \gamma_{\pi}+\left(i_{\mathrm{t}}+g_{\mathrm{m}} v_{\pi}\right) \cdot\left(\gamma_{\mathrm{o}}\left\|\gamma_{\mathrm{oc}}\right\| R_{\mathrm{L}}\right) \\
& =i_{\mathrm{t}} v_{\pi}+g_{\mathrm{m}}\left(1+\frac{1}{\beta_{\mathrm{F}}}\right) v_{\pi}\left(\gamma_{\mathrm{o}}\left\|\gamma_{\mathrm{oc}}\right\| R_{\mathrm{L}}\right) \\
R_{\mathrm{in}} & =\frac{v_{\mathrm{t}}}{i_{\mathrm{t}}}=\gamma_{\pi}+\frac{g_{\mathrm{m}}\left(1+\frac{1}{\beta_{\mathrm{F}}}\right) v_{\pi}\left(\gamma_{\mathrm{o}}\left\|\gamma_{\mathrm{oc}}\right\| R_{\mathrm{L}}\right)}{g_{\mathrm{m}} \frac{v_{\pi}}{\beta_{\mathrm{F}}}} \\
& =\gamma_{\pi}+\left(\beta_{\mathrm{F}}+1\right)\left(\gamma_{\mathrm{o}}\left\|\gamma_{\mathrm{oc}}\right\| R_{\mathrm{L}}\right) \quad \text { much larger than } \gamma_{\pi}
\end{aligned}
$$

$R_{\text {out }}$
$v_{\mathrm{s}}=0$, leave R_{s}, apply $v_{\mathrm{t}}, i_{\mathrm{t}}$ at the output

$$
\begin{aligned}
& \ll \text { than } g_{\mathrm{m}} v_{\pi} \\
& (i_{\mathrm{t}}+g_{\mathrm{m}} v_{\pi}+\overbrace{\frac{v_{\neq}}{\not \gamma_{\pi}}}) \cdot\left(\gamma_{\mathrm{o}} \| \gamma_{\mathrm{oc}}\right)=v_{\mathrm{t}} \\
& \text { voltage divider } v_{\pi}=-\frac{\gamma_{\pi}}{\gamma_{\pi}+R_{\mathrm{s}}} \cdot v_{\mathrm{t}} \\
& \Longrightarrow i_{\mathrm{t}}=-g_{\mathrm{m}} v_{\pi}+\frac{v_{\mathrm{t}}}{\gamma_{\mathrm{o}} \| \gamma_{\mathrm{oc}}} \\
& \Longrightarrow i_{\mathrm{t}}=\frac{g_{\mathrm{m}} \gamma_{\pi}}{\gamma_{\pi}+R_{\mathrm{s}}} \cdot v_{\mathrm{t}}+\frac{v_{\mathrm{t}}}{\gamma_{\mathrm{o}} \| \gamma_{\mathrm{oc}}}=\left(\frac{\beta_{\mathrm{F}}}{\gamma_{\pi}+R_{\mathrm{s}}}+\frac{1}{\gamma_{\mathrm{o}} \| \gamma_{\mathrm{oc}}}\right) v_{\mathrm{t}} \\
& \therefore i_{\mathrm{t}} \simeq \frac{\beta_{\mathrm{F}}}{\gamma_{\pi}+R_{\mathrm{s}}} v_{\mathrm{t}} \\
& R_{\text {out }}=\frac{v_{\mathrm{t}}}{i_{\mathrm{t}}}=\frac{\gamma_{\pi}+R_{\mathrm{s}}}{\beta_{\mathrm{F}}}=\frac{1}{g_{\mathrm{m}}}+\frac{R_{\mathrm{s}}}{\beta_{\mathrm{F}}} \quad \text { LOW }!\because g_{\mathrm{m}}, \beta_{\mathrm{F}} \text { large }
\end{aligned}
$$

In conclusion, see the summary sheet handout

MIT OpenCourseWare
http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

