Recitation 25: CMOS Cascade Amplifier

Last week, we talked about a particular example of multi-stage amplifier: CS-CB cascode amplifier. We used BJT/CMOS in the circuit (BICMOS)
Today we will look at the CMOS cascode amplifier with some specific requirement on $R_{\text {out }}$, and see how to generate $I_{\text {sup }}$ and V_{B}

This is a CS-CG CMOS cascode amplifier. It has

- $R_{\text {in }} \infty$
- $R_{\text {out }}$ very high (compare to CS only)
- Very good frequency response (close to CG, better than CS)

Example: Device Data

$$
\begin{aligned}
& V_{\mathrm{T}_{\mathrm{p}}}=-1 \mathrm{~V} \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=25 \mu \mathrm{~A} / \mathrm{V}^{2} \quad \lambda_{\mathrm{p}}=0.02 \mathrm{~V}^{-1} \\
& V_{\mathrm{T}_{\mathrm{n}}}=1 \mathrm{~V} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=50 \mu \mathrm{~A} / \mathrm{V}^{2}, \quad \lambda_{\mathrm{n}}=0.05 \mathrm{~V}^{-1}, \mathrm{~L}=2 \mu \mathrm{~m}
\end{aligned}
$$

Goal:

- design transconductance amplifier with $G_{\mathrm{m}}=1 \mathrm{mS}, \mathrm{R}_{\text {out }} \geq 10 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{in}}=\infty$.
- With 5 V power supply, $2 \mu \mathrm{~m}$ CMOS process.
- output drives other CMOS (capacitive load).
- Use $I_{\text {sup }}=100 \mu \mathrm{~A}$.

Small signal model of the circuit

This is design on M1.

M2: output resistance requirement determines size of M2

$$
R_{\mathrm{out}} \simeq \gamma_{\mathrm{oc}} \|\left(g_{\mathrm{m} 2} \cdot \gamma_{\mathrm{o} 2} \cdot \gamma_{\mathrm{o} 1}\right) \geq 10 \mathrm{M} \Omega
$$

Assume both $\gamma_{\mathrm{oc}}, g_{\mathrm{m} 2} \cdot \gamma_{\mathrm{o} 2} \cdot \gamma_{\mathrm{o} 1}$ are on the same order,

$$
\begin{aligned}
\gamma_{\mathrm{oc}} & \simeq g_{\mathrm{m} 2} \cdot \gamma_{\mathrm{o} 2} \cdot \gamma_{\mathrm{o} 1} \Longrightarrow g_{\mathrm{m} 2} \cdot \gamma_{\mathrm{o} 1} \cdot \gamma_{\mathrm{o} 2} \geq 20 \mathrm{M} \Omega \\
\lambda_{\mathrm{n}} & =0.05 \mathrm{~V}^{-1} \Longrightarrow \gamma_{\mathrm{o} 1}=\gamma_{\mathrm{o} 2}=\frac{1}{\lambda_{\mathrm{n}} \mathrm{I}_{\mathrm{D}}}=\frac{1}{\left(0.05 \mathrm{~V}^{-1}\right)(100 \mu \mathrm{~A})}=200 \mathrm{k} \Omega \\
g_{\mathrm{m} 2} \cdot(200 \mathrm{k} \Omega)(200 \mathrm{k} \Omega) & \geq 20 \mathrm{M} \Omega \Longrightarrow \mathrm{~g}_{\mathrm{m} 2} \geq 5 \times 10^{-4} \mathrm{~S}=0.5 \mathrm{mS} \\
g_{\mathrm{m} 2} & =\sqrt{2 I_{\mathrm{D}}\left(\frac{w}{L}\right)_{2} \mu_{\mathrm{n}} C_{\mathrm{ox}}} \Longrightarrow\left(\frac{w}{L}\right)_{2}=25, \quad w_{2}=50 \mu \mathrm{~m}
\end{aligned}
$$

Current Source Design

Now how to design current source $I_{\text {sup }}$ so that $\gamma_{\text {oc }} \geq 20 \mathrm{M} \Omega$? Yesterday we talked about simple MOS current source

\Longrightarrow need to cascode circuit for current source. Add a current buffer (CG) for high $R_{\text {out }}$ Source resistance of current supply

Need $g_{\mathrm{m} 4}$, which is determined by size M4
Size of M3 and M4 is related to $V_{\mathrm{G} 3}$ and $V_{\mathrm{G} 4}$ to bias these gates, M3 and M4 need to be in saturation regime:

$$
V_{\mathrm{SD}}>V_{\mathrm{SG}}+V_{\mathrm{T}_{\mathrm{p}}} \quad \text { Choose } V_{\mathrm{SG}}=1.5 \mathrm{~V} \Longrightarrow \text { minimum }_{\mathrm{SD}}=(1.5-1), \mathrm{V}=0.5 \mathrm{~V}
$$

(If we choose smaller V_{SG}, we will need larger device $\frac{w}{L}$ to carry $100 \mu \mathrm{~A}$)

$$
\begin{aligned}
\text { with } V_{\mathrm{SG}} & =1.5 \mathrm{~V} \Longrightarrow \mathrm{~V}_{\mathrm{G}_{3}}=3.5 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{G} 4}=2 \mathrm{~V} \\
\text { Since }\left|I_{\mathrm{DP}}\right| & \simeq \frac{w}{2 L} \mu_{\mathrm{p}} C_{\mathrm{ox}}\left(V_{\mathrm{SG}}+V_{\mathrm{T}_{\mathrm{p}}}\right)^{2}=100 \mu \mathrm{~A} \\
(\bar{L})_{3,4} & =\frac{2\left|I_{\mathrm{Dp}}\right|}{\mu_{\mathrm{p}} C_{\mathrm{ox}}\left(V_{\mathrm{SG}}+V_{\mathrm{T}_{\mathrm{p}}}\right)^{2}}=32=\frac{64}{2} \\
g_{\mathrm{m} 4} & =\frac{w}{L} \mu_{\mathrm{p}} C_{\mathrm{ox}}\left(V_{\mathrm{SG}}+V_{\mathrm{T}_{\mathrm{p}}}\right)=0.4 \mathrm{mS}
\end{aligned}
$$

(Size of M3B \& M4B should be the same as for M4 and M3, helps in matching current flow). Then

$$
\begin{aligned}
R_{\text {currentsource }} & =g_{\mathrm{m} 4} \cdot \gamma_{04} \cdot \gamma_{\mathrm{o} 3}=(0.4 \mathrm{mS})(500 \mathrm{k} \Omega)(500 \mathrm{k} \Omega) \\
& =100 \mathrm{M} \Omega>20 \mathrm{M} \Omega
\end{aligned}
$$

What does the design look like so far?

\Longrightarrow Need voltage source for V_{B}. Use diode connected NMOS (M2B) between $I_{\text {REF }}$ and MOS

Make M2B same size as M2, $\left(\frac{w}{L}\right)_{2 \mathrm{~B}}=50 / 2$ and:

$$
V_{\mathrm{GS}_{2}}=V_{\mathrm{GS}_{2 \mathrm{~B}}}=V_{\mathrm{T}_{\mathrm{n}}}+\sqrt{\frac{2 I_{\mathrm{REF}}}{\left(\frac{w}{L}\right)_{2} \mu_{\mathrm{n}} C_{\mathrm{ox}}}}=1.4 \mathrm{~V}
$$

Output Voltage Swing

$$
\begin{aligned}
\text { upswing : } & \text { M4 must stay in saturation regime } \\
V_{\mathrm{SD}_{4}} \geq & V_{\mathrm{SG}_{4}}+V_{\mathrm{T}_{\mathrm{p}}} \Longrightarrow V_{\mathrm{SD}_{4}} \geq 1.5 \mathrm{~V}-1 \mathrm{~V}=0.5 \mathrm{~V} \\
\text { Since } V_{\mathrm{S}_{4}}= & 3.5 \mathrm{~V} \Longrightarrow \mathrm{~V}_{\mathrm{D}_{4}} \leq 3 \mathrm{~V} \\
\text { down swing : } & \text { M2 must stay in saturation regime } \\
V_{\mathrm{DS}_{2}} \geq & V_{\mathrm{GS}_{2}}-V_{\mathrm{T}_{\mathrm{n}}}, \quad V_{\mathrm{DS}_{2}} \geq 1.4 \mathrm{~V}-1.0 \mathrm{~V}=0.4 \mathrm{~V} \\
\text { Since } V_{\mathrm{S}_{2}}= & 0.6 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{D}_{2}} \geq 1 \mathrm{~V} \\
\Longrightarrow & \text { Swing is } 1.0 \mathrm{~V} \leq \mathrm{V}_{\text {out }} \leq 3.0 \mathrm{~V}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

