Tutorial #1

Problem 1 – Multiple dopants in Silicon

A sample is doped with the following – P 10^{16} cm⁻³.

- a) Estimate the electron and hole concentrations in equilibrium (n_o & p_o) at room temperature (T=300K)?
- b) What is the majority carrier at 300K?
- c) What is the doping type at 300K?

The above sample is then doped with an addition of Ge 10^{16} cm⁻³.

- d) Estimate the electron and hole concentrations in equilibrium ($n_0 \& p_0$) at 300K?
- e) What is the majority carrier at 300K?
- f) What is the doping type at 300K?

The above sample is then doped with an addition of B 10^{18} cm⁻³.

- g) Estimate the electron and hole concentrations in equilibrium ($n_o \& p_o$) at 300K?
- h) What is the majority carrier at 300K?
- i) What is the doping type at 300K?

Problem 2 — Intrinsic Carrier Concentration Dependence on Temperature

The intrinsic carrier concentration n_i varies with temperature as

$$n_i(T) = AT^{3/2} \exp\left[-\frac{E_G}{2kT}\right]$$

where A = 3.32 x 10^{15} cm⁻³/K^{3/2}, $k = 8.62 \times 10^{-5} eV / K$, T is the temperature in K, and E_G is the bandgap in eV (for Si E_G =1.1 eV). Assume that E_G does not change with temperature and n_i=1x10¹⁰ cm⁻³ at 300 K. A sample is doped with P 10¹⁴ cm⁻³. At T=900K, is the sample intrinsic or extrinsic?

Problem 3 — Web lab demo

6.012 Microelectronic Devices and Circuits Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.