6.012 Microelectronic Devices and Circuits

Tutorial \#2

Problem 1 - Drift Conduction

Current generation integrated circuits process technologies for Microprocessors and Dynamic Random Access Memories (DRAM) have physical gate lengths of $23 \mathrm{~nm}(0.023 \mu \mathrm{~m})$. For this part of the problem assume that the active device cross-sectional area is $(0.023 \mu \mathrm{~m})^{2}$ and the acceptor doping concentration of $\mathrm{N}_{\mathrm{a}}=4 \times 10^{18} \mathrm{~cm}^{-3}$.
a) Estimate the velocity of the holes in the channel if the voltage drop across the channel is 0.2 V . Assume the potential drop is linearly distributed and the operating temperature is 300 K .
b) How long does it take the holes to travel across the channel?
c) What is the hole current?

Problem 2 - Silicon Resistor and Sheet Resistance (based on P2.7)

Figure P2.7 is a top view of a Si region which has metal electrical contacts on two sides, across which a voltage of 2 V is applied. The Si layer is doped with $10^{13} \mathrm{~cm}^{-3} \mathrm{As}$ and is 2 um thick. At 300 K ,
a) What is the sheet resistance $R \square$?
b) What is the resistance R ?
c) Find the value of the electric field E_{x} in the Si .

MIT OpenCourseWare
http://ocw.mit.edu

6.012 Microelectronic Devices and Circuits

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

