Problem Wk.6.1.3: Proportional plus Angle

Part 1: anglePlusPropModel

We wish to analyze the behavior of the angle-plus-proportional controller described by

```
omega[n] = k3 * e[n] - k4 * theta[n].
```

Use the functions and methods associated with the sf module to construct a procedure called that takes two required arguments:

- the proportional gain k3 applied to the error at time n, and
- the angle gain k4 applied to the angle at time n

and which returns a system function for a system whose input is the desired distance and whose output is the actual distance.

You can debug these in Idle by using the file designLab06Work.py.

Part 2: Gains

Consider four different values of k3: 1, 3, 10, and 30. For each value of k3, use <code>optimize.optOverLine</code> (from the <code>optimize</code> module) to determine the value of k4 that minimizes the magnitude of the least stable pole.

Enter 2 decimal place of accuracy for k3 and 2 decimal places for the pole magnitude.

1.	k3	k4	magnitude of dominant pole		
	1				
	3				
	10				
	30				

MIT OpenCourseWa	re
http://ocw.mit.edu	

6.01SC Introduction to Electrical Engineering and Computer Science Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.