Problem Wk.6.2.2: System representations

Consider the system specified by this block diagram

To specify the answers below, enter one or more numbers in the boxes; do
not enter any commas, just numbers separated by spaces.

1. Write the difference equation for the block diagram, assume that $\mathrm{K}=5$.

A difference equation is in the form:
$y[n]=c_{0} y[n-1]+c_{1} y[n-2]+\ldots+c_{k-1} y[n-k]+d_{0} x[n]+d_{1} x[n-1]+\ldots+d_{j} x[n-j]$
Specify the dCoeffs: $d_{0} \ldots d_{j}$ and the cCoeffs: $c_{0} \ldots c_{k-1}$ for each of the difference equations below. For each question, enter a sequence of numbers representing the coefficients.

If one set of coefficients is empty, enter none, otherwise enter a sequence of numbers separated by spaces (no commas, parens, brackets, etc).

Difference equation:

dCoeffs: cCoeffs:
2. Write the system function for the block diagram, assume that $k=5$.

The system function is represented by the coefficients of the numerator and denominator polynomials. The coefficients of the polynomial are written highest order first.

System function:

numerator coeffs:
denominator coeffs:
3. If you know that the poles are at $+0.5 j$ and $-0.5 j$, what is the value of K (enter a floating point number)?
4. If you know that $K=1$, what is the response of the system to a unit sample?
$y[0]=$
$y[1]=$
$y[2]=$
$y[3]=$
$y[4]=$

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

